Skip to main content
Log in

Profile of pterostilbene-induced redox homeostasis modulation in cardiac myoblasts and heart tissue

Journal of Biosciences Aims and scope Submit manuscript

Abstract

This study was designed to investigate the effect of pterostilbene (PTS) on cardiac oxidative stress in vitro, as this is a simple and promising methodology to study cardiac disease. Cardiac myoblasts (H9c2 cells) and homogenised cardiac tissue were incubated with the PTS and cyclodextrin (PTS + HPβCD) complex for 1 and 24 h, respectively, at concentrations of 50 μM for the cells and 25 and 50 μM for cardiac tissue. The PTS + HPβCD complex was used to increase the solubility of PTS in water. After the pretreatment period, cardiomyoblasts were challenged with hydrogen peroxide (6.67 μM) for 10 min, while cardiac tissue was submitted to a hydroxyl radical generator system (30 min). Cellular viability, oxidative stress biomarkers (e.g. total reactive oxygen species (ROS), carbonyl assay and lipoperoxidation) and the antioxidant response (e.g. sulfhydryl and the antioxidant enzyme activities of superoxide dismutase, catalase and glutathione peroxidase) were evaluated. In cardiomyoblasts, the PTS + HPβCD complex (50 μM) increased cellular viability. Moreover, the PTS + HPβCD complex also significantly increased sulfhydryl levels in the cells submitted to an oxidative challenge. In cardiac tissue, lipid peroxidation, carbonyls and ROS levels were significantly increased in the groups submitted to oxidative damage, while the PTS + HPβCD complex significantly reduced ROS levels in these groups. In addition, the PTS + HPβCD complex also provoked increased catalase activity in both experimental protocols. These data suggest that the PTS + HPβCD complex may play a cardioprotective role through a reduction of ROS levels associated with an improved antioxidant response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  • Aebi H 1984 Catalase in vitro. Methods Enzymol. 105 121–126

    Article  CAS  Google Scholar 

  • Aksenov MY and Markesbery WR 2001 Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci. Lett. 302 141–145

    Article  CAS  Google Scholar 

  • Barbosa KBF, Costa NMB, Alfenas RCG, Paula SO, Minim VPR and Bressan J 2010 Estresse oxidativo: conceito, implicações e fatores modulatórios. Revista de nutrição 23 629–643

    Article  CAS  Google Scholar 

  • Bethune SJ, Schultheiss N and Henck J-O 2011 Improving the Poor Aqueous Solubility of Nutraceutical Compound Pterostilbene through Cocrystal Formation. Crystal Growth Design 11 2817–2823

    Article  CAS  Google Scholar 

  • Bhakkiyalakshmi E, Dineshkumar K, Karthik S, Sireesh D, Hopper W, Paulmurugan R and Ramkumar KM 2016 Pterostilbene-mediated Nrf2 activation: Mechanistic insights on Keap1 Nrf2 interface. Bioorg. Med. Chem. 24 3378–3386

    Article  CAS  Google Scholar 

  • Borbas E, Balogh A, Bocz K, Muller J, Kiserdei E, Vigh T, Sinko B, Marosi A, Halasz A, Dohanyos Z, Szente L, Balogh GT and Nagy ZK 2015 In vitro dissolution-permeation evaluation of an electrospun cyclodextrin-based formulation of aripiprazole using muFlux. Int. J. Pharm. 491 180–189

    Article  CAS  Google Scholar 

  • Chiou YS, Tsai LM, Nagabhushanam K, Wang JY, Wu HC, Ho TC, Pan HM 2011 Pterostilbene Is More Potent than Resveratrol in Preventing Azoxymethane (AOM)-Induced Colon Tumorigenesis via Activation of the NF-E2-Related Factor 2 (Nrf2)-Mediated Antioxidant Signaling Pathway. J. Agric. Food. Chem. 59 2725–2733

    Article  CAS  Google Scholar 

  • Dewi NI, Yagasaki K and Miura Y 2015 Anti-proliferative effect of pterostilbene on rat hepatoma cells in culture. Cytotechnology 67 671–80

    Article  CAS  Google Scholar 

  • Dos Santos Lacerda D, Turck P, Gazzi de Lima-Seolin B, Colombo R, Duarte Ortiz V, Poletto Bonetto JH, Campos-Carraro C, Bianchi SE, Bello-Klein A, Linck Bassani V and Sander da Rosa Araujo A 2017 Pterostilbene reduces oxidative stress, prevents hypertrophy and preserves systolic function of right ventricle in cor pulmonale model. Brit. J. Pharmacol. 174 3302–3314

    Article  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H 1991 Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biol. Med. 11 81–128

    Article  CAS  Google Scholar 

  • Estrela JM, Ortega A, Mena S, Rodriguez ML and Asensi M 2013 Pterostilbene: Biomedical applications. Crit. Rev. Clin. Lab. Sci. 50 65–78

    Article  CAS  Google Scholar 

  • Fernandes RO, Bonetto JH, Baregza B, de Castro AL, Puukila S, Forsyth H, Schenkel PC, Llesuy SF, Brum IS, Araujo AS, Khaper N and Belló-Klein A 2015 Modulation of apoptosis by sulforaphane is associated with PGC-1α stimulation and decreased oxidative stress in cardiac cells. Mol. Cell. Biochem. 401 61–70

    Article  CAS  Google Scholar 

  • Flohé L and Gunzler WA 1984 Assay of glutathione peroxidase. Methods Enzymol. 105 14–121

    Google Scholar 

  • Fraga CG, Galleano M, Verstraeten SV and Oteiza PI 2010 Basic biochemical mechanisms behind the health benefits of polyphenols. Mol. Aspects Med. 31 435–445

    Article  CAS  Google Scholar 

  • Freshney RI 2006 Basic Principles of Cell Culture. In Culture of Cells for Tissue Engineering (eds G Vunjak-Novakovic and R I Freshney), John Wiley & Sons, Inc, Hoboken, NJ, USA:03–22

  • Granger DL, Anstey NM, Miller WC, Weinberg JB 1999 Measuring nitric oxide production in human clinical studies. Methods Enzymol. 301 49–61

    Article  CAS  Google Scholar 

  • Halliwell B 2012 Free radicals and antioxidants: updating a personal view. Nutr. Rev. 70 257–265

    Article  Google Scholar 

  • Halliwell B and Gutteridge JM 1986 Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch. Biochem. Biophys. 246 501–514

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM 1990 Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186 1–85

    Article  CAS  Google Scholar 

  • Khullar M, Al-Shudiefat AA, Ludke A, Binepal G and Singal PK 2010 Oxidative stress: a key contributor to diabetic cardiomyopathy. Can. J. Physiol. Pharmacol. 88 233–240

    Article  CAS  Google Scholar 

  • Kosuru R, Rai U, Prakash S, Singh A and Singh S 2016 Promising therapeutic potential of pterostilbene and its mechanistic insight based on preclinical evidence. Eur. J. Pharmacol.

    Google Scholar 

  • Lameiro MGS 2012 Fitoquímicos e atividade metabólica de extratos de amorapreta (Rubus sp.) e mirtilo (Vaccinium sp.) em ratos Wistar. In Programa de Pós-Graduação em Ciência e Tecnologia Agroindustrial (Universidade Federal de Pelotas, Pelotas) p 117

  • Lebel CPIH and Bondy SC 1992 Evalution of the probe 2′, 7′dichlorofluorescencin as an indicator of reactive oxygen species formation and oxidative stree. Chem. Res. Toxicol. 5 227–231

    Article  CAS  Google Scholar 

  • Llesuy SF, Milei J, Molina H, Boveris A and Milei S 1985 Comparison of lipid peroxidation and myocardial damage induced by adriamycin and 4’-epiadriamycin in mice. Tumori 71 241–249

    Article  CAS  Google Scholar 

  • Loftsson T and Brewster ME 1996 Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85 1017–1025

    Article  CAS  Google Scholar 

  • Loftsson T, Moya-Ortega MD, Alvarez-Lorenzo C and Concheiro A 2016 Pharmacokinetics of cyclodextrins and drugs after oral and parenteral administration of drug/cyclodextrin complexes. J. Pharm. Pharmacol. 68 544–555

    Article  CAS  Google Scholar 

  • Lopez-Nicolas JM, Rodriguez-Bonilla P, Mendez-Cazorla L and Garcia-Carmona F 2009 Physicochemical study of the complexation of pterostilbene by natural and modified cyclodextrins. J. Agric. Food Chem. 57 5294–5300

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough AL, Farr AL and Randall R 1951 Protein measurement with the folin phenol reagent. J. Biomol. Chem. 193 265–275

    CAS  Google Scholar 

  • Mallik A, Bryan S, Puukila S, Chen A and Khaper N 2011 Efficacy of Pt-modified TiO(2) nanoparticles in cardiac cells. Exp. Clin. Cardiol. Res. Pract. 16 6–10

    CAS  Google Scholar 

  • Manickam LS 1997 Training community voluteers in preventing alcoholism and drug addiction : a basic programme and its impact on certain variables. Indian J. Psychiatry 39 220–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marklund SL 1985 Superoxide dismutase isoenzymes in tissues and plasma from New Zealand black mice, nude mice and normal BALB/c mice. Mutat. Res. Fundamental Mol. Mechanisms Mutagenesis 148 129–134

    Article  CAS  Google Scholar 

  • McCormack D and McFadden D 2013 A Review of Pterostilbene Antioxidant Activity and Disease Modification. Oxidat. Med. Cell. Longev. 2013 1–15, Article ID 575482. https://doi.org/10.1155/2013/575482

    Article  Google Scholar 

  • Mikstacka R, Rimando AM and Ignatowicz E 2010 Antioxidant effect of trans-resveratrol, pterostilbene, quercetin and their combinations in human erythrocytes in vitro. Plant Foods Hum. Nutr. 65 57–63

    Article  CAS  Google Scholar 

  • Moskaug JO, Carlsen H, Myhrstad MC and Blomhoff R 2005 Polyphenols and glutathione synthesis regulation. Am. J. Clin. Nutr. 81 277S–283S

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N and Yagi K 1979 Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95 351–358

    Article  CAS  Google Scholar 

  • Patterson CE and Rhoades RA 1988 Protective role of sulfhydryl reagents in oxidant lung injury. Exp. Lung Res. 14 1005–1019

    Article  CAS  Google Scholar 

  • Pinho E, Grootveld M, Soares G and Henriques M 2014 Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydr. Polym. 101 121–135

    Article  CAS  Google Scholar 

  • Reznick AZ and Packer L 1994 Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 233 357–363

    Article  CAS  Google Scholar 

  • Searles CD 2002 The nitric oxide pathway and oxidative stress in heart failure. Congest. Heart Fail. 8 142–147, 155

    Google Scholar 

  • Shewchuk LJ, Bryan S, Ulanova M and Khaper N 2010 Integrin b3 prevents apoptosis of HL-1 cardiomyocytes under conditions of oxidative stress. J. Physiol. Pharmacol. 88 324–330

    Article  CAS  Google Scholar 

  • Taverne YJ, Bogers AJ, Duncker DJ and Merkus D 2013 Reactive oxygen species and the cardiovascular system. Oxidat. Med. Cell. Longev. 2013 862423

    Article  Google Scholar 

  • von Moltke LL, Greenblatt DJ, Schmider J, Wright CE, Harmatz JS and Shader RI 1998 In vitro approaches to predicting drug interactions in vivo. Biochem. Pharmacol. 55 113–122

    Article  Google Scholar 

  • Wang C, Sun H, Song Y, Ma Z, Zhang G, Gu X and Zhao L 2015 Pterostilbene attenuates inflammation in rat heart subjected to ischemia-reperfusion: role of TLR4/NF-kappaB signaling pathway. Int. J. Clin. Exp. Med. 8 1737–1746

    PubMed  PubMed Central  Google Scholar 

  • Wei X, Guo W, Wu S, Wang L, Huang P, Liu J and Fang B 2010 Oxidative stress in NSC-741909-induced apoptosis of cancer cells. J. Transl. Med. 8 37

    Article  Google Scholar 

  • WHO 2017 http://www.who.int/mediacentre/factsheets/fs317/en/

  • Wu X, Kang J, Xie C, Burris R, Ferguson EM, Badger M T and Nagarajan S 2010 Dietary Blueberries Attenuate Atherosclerosis in Apolipoprotein E-Deficient Mice by Upregulating Antioxidant Enzyme Expression. J. Nutr. Dis. 140 1628–1632

    Article  CAS  Google Scholar 

  • Xue EX, Lin JP, Zhang Y, Sheng SR, Liu HX, Zhou YL and Xu H 2017 Pterostilbene inhibits inflammation and ROS production in chondrocytes by activating Nrf2 pathway. Oncotarget 8 41988–42000

    PubMed  PubMed Central  Google Scholar 

  • Yeo SC, Ho PC and Lin HS 2013 Pharmacokinetics of pterostilbene in Sprague-Dawley rats: the impacts of aqueous solubility, fasting, dose escalation, and dosing route on bioavailability. Mol. Nutr. Food Res. 57 1015–1025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by two Brazilian research agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A S R Araujo.

Additional information

Communicated by Maria Eliana Lanio.

Corresponding editor: Maria Eliana Lanio

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couto, G.K., Fernandes, R.O., Lacerda, D. et al. Profile of pterostilbene-induced redox homeostasis modulation in cardiac myoblasts and heart tissue. J Biosci 43, 931–940 (2018). https://doi.org/10.1007/s12038-018-9815-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-018-9815-9

Keywords

Navigation