Journal of Biosciences

, Volume 43, Issue 5, pp 835–856 | Cite as

Alterations in gut bacterial and fungal microbiomes are associated with bacterial Keratitis, an inflammatory disease of the human eye

  • Rajagopalaboopathi Jayasudha
  • Sama Kalyana Chakravarthy
  • Gumpili Sai Prashanthi
  • Savitri Sharma
  • Prashant Garg
  • Somasheila I Murthy
  • Sisinthy Shivaji


Dysbiosis, or imbalance in the gut microbiome, has been implicated in auto-immune, inflammatory, neurological diseases as well as in cancers. More recently it has also been shown to be associated with ocular diseases. In the present study, the association of gut microbiome dysbiosis with bacterial Keratitis, an inflammatory eye disease which significantly contributes to corneal blindness, was investigated. Bacterial and fungal gut microbiomes were analysed using fecal samples of healthy controls (HC, n = 21) and bacterial Keratitis patients (BK, n = 19). An increase in abundance of several anti-inflammatory organisms including Dialister, Megasphaera, Faecalibacterium, Lachnospira, Ruminococcus and Mitsuokella and members of Firmicutes, Veillonellaceae, Ruminococcaceae and Lachnospiraceae was observed in HC compared to BK patients in the bacterial microbiome. In the fungal microbiome, a decrease in the abundance of Mortierella, Rhizopus, Kluyveromyces, Embellisia and Haematonectria and an increase in the abundance of pathogenic fungi Aspergillus and Malassezia were observed in BK patients compared to HC. In addition, heatmaps, PCoA plots and inferred functional profiles also indicated significant variations between the HC and BK microbiomes, which strongly suggest dysbiosis in the gut microbiome of BK patients. This is the first study demonstrating the association of gut microbiome with the pathophysiology of BK and thus supports the gut–eye axis hypothesis. Considering that Keratitis affects about 1 million people annually across the globe, the data could be the basis for developing alternate strategies for treatment like use of probiotics or fecal transplantation to restore the healthy microbiome as a treatment protocol for Keratitis.


Bacterial Keratitis dysbiosis gut bacterial microbiome gut fungal microbiome 


Supplementary material

12038_2018_9798_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 12 kb)
12038_2018_9798_MOESM2_ESM.jpg (132 kb)
Supplementary material 2 (JPEG 133 kb)
12038_2018_9798_MOESM3_ESM.jpg (29 kb)
Supplementary material 3 (JPEG 29 kb)
12038_2018_9798_MOESM4_ESM.jpg (141 kb)
Supplementary material 4 (JPEG 141 kb)
12038_2018_9798_MOESM5_ESM.doc (54 kb)
Supplementary material 5 (DOC 55 kb)
12038_2018_9798_MOESM6_ESM.doc (54 kb)
Supplementary material 6 (DOC 54 kb)
12038_2018_9798_MOESM7_ESM.xlsx (1 mb)
Supplementary material 7 (XLSX 1037 kb)
12038_2018_9798_MOESM8_ESM.xlsx (20 kb)
Supplementary material 8 (XLSX 20 kb)
12038_2018_9798_MOESM9_ESM.xlsx (44 kb)
Supplementary material 9 (XLSX 45 kb)
12038_2018_9798_MOESM10_ESM.xlsx (12 kb)
Supplementary material 10 (XLSX 12 kb)
12038_2018_9798_MOESM11_ESM.doc (90 kb)
Supplementary material 11 (DOC 91 kb)
12038_2018_9798_MOESM12_ESM.xlsx (34 kb)
Supplementary material 12 (XLSX 35 kb)
12038_2018_9798_MOESM13_ESM.doc (53 kb)
Supplementary material 13 (DOC 53 kb)
12038_2018_9798_MOESM14_ESM.xlsx (386 kb)
Supplementary material 14 (XLSX 386 kb)
12038_2018_9798_MOESM15_ESM.xlsx (14 kb)
Supplementary material 15 (XLSX 14 kb)


  1. Anand S, Kaur H and Mande SS 2016 Comparative In silico analysis of butyrate production pathways in gut commensals and pathogens. Front. Microbiol. 7 1945PubMedPubMedCentralGoogle Scholar
  2. Andriessen EM, Wilson AM, Mawambo G, Dejda A, Miloudi K, Sennlaub F and Sapieha P 2016 Gut microbiota influences pathological angiogenesis in obesity-driven choroidal neovascularization. EMBO Mol. Med. 8 1366–1379PubMedPubMedCentralGoogle Scholar
  3. Antharam VC, Li EC, Ishmael A, Sharma A, Mai V, Rand KH and Wang GP 2013 Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J. Clin. Microbiol. 51 2884–2892PubMedPubMedCentralGoogle Scholar
  4. Bhute SS, Suryavanshi MV, Joshi SM, Yajnik CS, Shouche YS and Ghaskadbi SS 2017 Gut microbial diversity assessment of Indian type-2-diabetics reveals alterations in Eubacteria, Archaea, and Eukaryotes. Front. Microbio. 8 214Google Scholar
  5. Borges FM, de Paula TO, Sarmiento MRA, de Oliveira MG, Pereira MLM, Toledo IV, Nascimento TC, Ferreira-Machado AB, et al. 2018 Fungal diversity of human gut microbiota among eutrophic, overweight, and obese individuals based on aerobic culture-dependent approach. Curr. Microbiol. 75 726–735PubMedGoogle Scholar
  6. Kalyana Chakravarthy S, Jayasudha R, Ranjith K, Dutta A, Pinna NK, Mande SS, Sharma S, Garg P, et al. 2018a Alterations in the gut bacterial microbiome in fungal Keratitis patients. PLOS ONE 13 e0199640PubMedPubMedCentralGoogle Scholar
  7. Kalyana Chakravarthy S, Jayasudha R, Sai Prashanthi G, Ali MH, Sharma S, Tyagi M and Shivaji S 2018b Dysbiosis in the gut bacterial microbiome of patients with uveitis, an inflammatory disease of the eye. Indian J. Microbiol. CrossRefPubMedGoogle Scholar
  8. Chan JFW, Lau SKP, Yuen K-Y and Woo PCY 2016 Talaromyces (Penicillium) marneffei infection in non-HIV-infected patients. Emerging Microbe. Infect. 5 e19Google Scholar
  9. Chen J, Chia N, Kalari KR, Yao JZ, Novotna M, Soldan MM, Luckey DH, Marietta EV, et al. 2016 Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci. Rep. 6 28484PubMedPubMedCentralGoogle Scholar
  10. Cheng VC, Chan JF, Ngan AH, To KK, Leung SY, Tsoi HW, Yam WC, Tai JW, et al. 2009 Outbreak of intestinal infection due to Rhizopus microsporus. J. Clin. Microbiol. 47 2834–2843PubMedPubMedCentralGoogle Scholar
  11. Correa-Martinez C, Brentrup A, Hess K, Becker K, Groll AH and Schaumburg F 2018 First description of a local Coprinopsis cinerea skin and soft tissue infection. New Microbe. New Infect. 21 102–104Google Scholar
  12. Dandona R and Dandona L 2003 Corneal blindness in a southern Indian population: need for health promotion strategies. Brit. J. Ophthalmol. 87 133–141Google Scholar
  13. Davies JL, Ngeleka M and Wobeser GA 2010 Systemic infection with Mortierella wolfii following abortion in a cow. Canad.Vet. J. 51 1391–1393Google Scholar
  14. de Paiva CS, Jones DB, Stern ME, Bian F, Moore QL, Corbiere S, Streckfus CF, Hutchinson DS, et al. 2016 Altered mucosal microbiome diversity and disease severity in Sjögren syndrome. Sci. Rep. 6 23561PubMedPubMedCentralGoogle Scholar
  15. Dehingia M, Thangjam Devi K, Talukdar NC, Talukdar R, Reddy N, Mande SS, Deka M and Khan MR 2015 Gut bacterial diversity of the tribes of India and comparison with the worldwide data. Sci. Rep. 5 18563PubMedPubMedCentralGoogle Scholar
  16. Devkota S, Leone V, Wang Y, Musch M, Antonopoulos D and Chang E 2012 Omega-3 supplementation prevents intestinal inflammation by inhibiting the expansion of an intestinal pathobiont in IL10−/− mice. FASEB J. 26 830–834Google Scholar
  17. Ebrahim W, Aly AH, Wray V, Mandi A, Teiten MH, Gaascht F, Orlikova B, Kassack MU, et al. 2013 Embellicines A and B: absolute configuration and NF-kB transcriptional inhibitory activity. J. Med. Chem. 56 2991–2999PubMedGoogle Scholar
  18. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, et al. 2005 Diversity of the human intestinal microbial flora. Science 308 1635–1638PubMedPubMedCentralGoogle Scholar
  19. Edgar RC 2010 Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26 2460–2461Google Scholar
  20. Faust K and Raes J 2016 CoNet app: inference of biological association networks using Cytoscape. F1000Research 5 1519PubMedPubMedCentralGoogle Scholar
  21. Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J and Huttenhower C 2012 Microbial co-occurrence relationships in the human microbiome. PLOS Comput. Biol. 8 e1002606PubMedPubMedCentralGoogle Scholar
  22. Ferrario C, Taverniti V, Milani C, Fiore W, Laureati M, De Noni I, Stuknyte M, Chouaia B, et al. 2014 Modulation of fecal Clostridiales bacteria and butyrate by probiotic intervention with Lactobacillus paracasei DG varies among healthy adults. J. Nutr. 144 1787–1796PubMedGoogle Scholar
  23. Fincher R-ME, Fisher JF, Lovell RD, Newman CL, Espinel-Ingroff A and Shadomy HJ 1991 Infection due to the fungus Acremonium (Cephalosporium). Medicine 70 398–409PubMedGoogle Scholar
  24. Fisher K and Phillips C 2009 The ecology, epidemiology and virulence of Enterococcus. Microbiology 155 1749–1757PubMedGoogle Scholar
  25. Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J, Garg N, Jansson JK, Dorrestein PC, et al. 2016 Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535 94PubMedGoogle Scholar
  26. Gonzales CA, Srinivasan M, Whitcher JP and Smolin G 1996 Incidence of corneal ulceration in Madurai district, South India. Ophthal. Epidemiol. 3 159–166Google Scholar
  27. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, et al. 2014 Human genetics shape the gut microbiome. Cell 159 789–799PubMedPubMedCentralGoogle Scholar
  28. Green M, Apel A and Stapleton F 2008 Risk factors and causative organisms in microbial keratitis. Cornea 27 22–27PubMedGoogle Scholar
  29. Gupta N, Tandon R, Gupta SK, Sreenivas V and Vashist P 2013 Burden of corneal blindness in India. Indian J. Community Med. 38 198–206PubMedPubMedCentralGoogle Scholar
  30. Hatziioanou D, Gherghisan-Filip C, Saalbach G, Horn N, Wegmann U, Duncan SH, Flint HJ, Mayer MJ, et al. 2017 Discovery of a novel lantibiotic nisin O from Blautia obeum A2-162, isolated from the human gastrointestinal tract. Microbiology 163 1292–1305PubMedPubMedCentralGoogle Scholar
  31. Henry CR, Flynn HW, Miller D, Forster RK and Alfonso EC 2012 Infectious Keratitis progressing to endophthalmitis: A 15-year-study of microbiology, associated factors, and clinical outcomes. Ophthalmology 119 2443–2449PubMedPubMedCentralGoogle Scholar
  32. Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, Lewis JD and Bushman FD 2013 Archaea and fungi of the human gut microbiome: Correlations with diet and bacterial residents. PLOS ONE 8 e66019PubMedPubMedCentralGoogle Scholar
  33. Horai R, Sen HN and Caspi RR 2017 Commensal microbiota as a potential trigger of autoimmune uveitis. Expert. Rev. Clin. Immunol. 13 291–293PubMedPubMedCentralGoogle Scholar
  34. Horai R, Zarate-Blades CR, Dillenburg-Pilla P, Chen J, Kielczewski JL, Silver PB, Jittayasothorn Y, Chan CC, et al. 2015 Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged site. Immunity 43 343–353PubMedPubMedCentralGoogle Scholar
  35. Huang X, Ye Z, Cao Q, Su G, Wang Q, Deng J, Zhou C, Kijlstra A, et al. 2018 Gut microbiota composition and fecal metabolic phenotype in patients with acute anterior uveitis. Invest. Ophthalmol. Vis. Sci. 59 1523–1531PubMedGoogle Scholar
  36. Kim KS, Rowlinson MC, Bennion R, Liu C, Talan D, Summanen P and Finegold SM 2010 Characterization of Slackia exigua isolated from human wound infections, including abscesses of intestinal origin. J. Clin. Microbiol. 48 1070–1075PubMedPubMedCentralGoogle Scholar
  37. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M and Glockner FO 2013 Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41 e1PubMedGoogle Scholar
  38. Koike ST and Rooney-Latham S 2012 First report of Embellisia allii causing skin blotch and bulb canker on garlic in California. Plant Dis. 96 291–291Google Scholar
  39. Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG and Knight R 2011 Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr. Protoc. Bioinformatics Chapter 10 Unit 10.17.
  40. Kugadas A, Christiansen SH, Sankaranarayanan S, Surana NK, Gauguet S, Kunz R, Fichorova R, Vorup-Jensen T, et al. 2016a Impact of microbiota on resistance to ocular Pseudomonas aeruginosa-induced Keratitis. PLoS Pathog. 12 e1005855PubMedPubMedCentralGoogle Scholar
  41. Kugadas A and Gadjeva M 2016b The presence of microbiota protects against Pseudomonas aeruginosa induced keratitis. J. Immunol. 196 67.16Google Scholar
  42. Lafayette TC, Oliveira LT, Landell M, Valente P, Alves SH and Pereira WV 2011 [Dipodascus capitatus (Geotrichum capitatum): fatal systemic infection on patient with acute myeloid leukemia]. Revista da Sociedade Brasileira de Medicina Tropical 44 648–650PubMedGoogle Scholar
  43. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, et al. 2013 Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31 814–821PubMedPubMedCentralGoogle Scholar
  44. Layios N, Canivet J-L, Baron F, Moutschen M and Hayette M-P 2014 Mortierella wolfii–associated invasive disease. Emerg. Infect. Dis. 20 1591–1592PubMedPubMedCentralGoogle Scholar
  45. Lindheim L, Bashir M, Münzker J, Trummer C, Zachhuber V, Leber B, Horvath A, Pieber TR, et al. 2017 Alterations in gut microbiome composition and barrier function are associated with reproductive and metabolic defects in women with polycystic ovary syndrome (PCOS): A pilot study. PLOS ONE 12 e0168390PubMedPubMedCentralGoogle Scholar
  46. Lombard L, Polizzi G, Guarnaccia V, Vitale A and Crous PW 2011 Calonectria spp. causing leaf spot, crown and root rot of ornamental plants in Tunisia. Persoonia 27 73–79PubMedPubMedCentralGoogle Scholar
  47. Lopetuso LR, Scaldaferri F, Petito V and Gasbarrini A 2013 Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog. 5 23PubMedPubMedCentralGoogle Scholar
  48. Lukiw WJ 2016 Bacteroides fragilis Lipopolysaccharide and inflammatory signaling in Alzheimer’s disease. Front. Microbiol. 7 1544PubMedPubMedCentralGoogle Scholar
  49. Maccaferri S, Klinder A, Brigidi P, Cavina P and Costabile A 2012 Potential Probiotic Kluyveromyces marxianus B0399 Modulates the immune response in Caco-2 cells and peripheral blood mononuclear cells and impacts the human gut microbiota in an in vitro colonic model system. Appl. Environ. Microbiol. 78 956–964PubMedPubMedCentralGoogle Scholar
  50. Magoc T and Salzberg SL 2011 FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27 2957–2963PubMedPubMedCentralGoogle Scholar
  51. Malan-Muller S, Valles-Colomer M, Raes J, Lowry CA, Seedat S and Hemmings SMJ 2018 The gut microbiome and mental health: implications for anxiety- and trauma-related disorders. Omics 22 90–107PubMedGoogle Scholar
  52. Mar Rodríguez M, Pérez D, Javier Chaves F, Esteve E, Marin-Garcia P, Xifra G, Vendrell J, Jové M, et al. 2015 Obesity changes the human gut mycobiome. Sci. Rep. 5 14600PubMedPubMedCentralGoogle Scholar
  53. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, et al. 2012 Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13 R79PubMedPubMedCentralGoogle Scholar
  54. Morrison DJ and Preston T 2016 Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7 189–200PubMedPubMedCentralGoogle Scholar
  55. Murray PR, Rosenthal KS and Pfaller MA 2013 Medical microbiology (7th ed.) (United States: Saunders) pp 325Google Scholar
  56. Nakamura YK, Metea C, Karstens L, Asquith M, Gruner H, Moscibrocki C, Lee I, Brislawn CJ, et al. 2016 Gut microbial alterations associated with protection from autoimmune uveitis. Invest. Ophthalmol. Vis. Sci. 57 3747–3758PubMedPubMedCentralGoogle Scholar
  57. Ohira H, Tsutsui W and Fujioka Y 2017 Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J. Atheroscler. Thromb. 24 660–672PubMedPubMedCentralGoogle Scholar
  58. Pascolini D and Mariotti SP 2012 Global estimates of visual impairment: 2010. Brit. J. Ophthalmol. 96 614–618Google Scholar
  59. Paterson MJ, Oh S and Underhill DM 2017 Host–microbe interactions: commensal fungi in the gut. Curr. Opin. Microbiol. 40 131–137PubMedGoogle Scholar
  60. Poltavska OA and Kovalenko NK 2012 Antimicrobial activity of bifidobacterial bacteriocin-like substances. Mikrobiol. Z. 74 32–42PubMedGoogle Scholar
  61. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, et al. 2010 A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464 59PubMedPubMedCentralGoogle Scholar
  62. Rao RS, Bhadra B, Kumar NN and Shivaji S 2007 Candida hyderabadensis sp. nov., a novel ascomycetous yeast isolated from wine grapes. FEMS Yeast Res. 7 489–493PubMedGoogle Scholar
  63. Remely M, Aumueller E, Merold C, Dworzak S, Hippe B, Zanner J, Pointner A, Brath H, et al. 2014 Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene 537 85–92PubMedGoogle Scholar
  64. Ribes JA, Vanover-Sams CL and Baker DJ 2000 Zygomycetes in Human Disease. Clin. Microbiol. Rev. 13 236–301PubMedPubMedCentralGoogle Scholar
  65. Romanin DE, Llopis S, Genoves S, Martorell P, Ramon VD, Garrote GL and Rumbo M 2016 Probiotic yeast Kluyveromyces marxianus CIDCA 8154 shows anti-inflammatory and anti-oxidative stress properties in in vivo models. Beneficial Microbes 7 83–93PubMedGoogle Scholar
  66. Rowan S, Jiang S, Korem T, Szymanski J, Chang ML, Szelog J, Cassalman C, Dasuri K, et al. 2017 Involvement of a gut-retina axis in protection against dietary glycemia-induced age-related macular degeneration. Proc. Nat. Acad. Sci. USA 114 E4472–E4481PubMedGoogle Scholar
  67. Saha S, Banerjee D, Khetan A and Sengupta J 2009 Epidemiological profile of fungal keratitis in urban population of West Bengal, India. Oman J. Ophthalmol. 2 114–118PubMedGoogle Scholar
  68. Saitoh S, Noda S, Aiba Y, Takagi A, Sakamoto M, Benno Y and Koga Y 2002 Bacteroides ovatus as the predominant commensal intestinal microbe causing a systemic antibody response in inflammatory bowel disease. Clin. Diagn. Lab. Immunol. 9 54–59PubMedPubMedCentralGoogle Scholar
  69. Salit RB, Shea YR, Gea-Banacloche J, Fahle GA, Abu-Asab M, Sugui JA, Carpenter AE, Quezado MM, et al. 2010 Death by edible mushroom: First report of Volvariella volvacea as an etiologic agent of invasive disease in a patient following double umbilical cord blood transplantation. J. Clin. Microbiol. 48 4329–4332PubMedPubMedCentralGoogle Scholar
  70. Scheiman J and Church GM 2017 Probiotic formulations for improving athletic performance. Patent (WO 2017180501 A1)Google Scholar
  71. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, et al. 2009 Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75 7537–7541PubMedPubMedCentralGoogle Scholar
  72. Schmieder R and Edwards R 2011 Quality control and preprocessing of metagenomic datasets. Bioinformatics 27 863–864PubMedPubMedCentralGoogle Scholar
  73. Scupham AJ, Presley LL, Wei B, Bent E, Griffith N, McPherson M, Zhu F, Oluwadara O, et al. 2006 Abundant and diverse fungal microbiota in the murine intestine. Appl. Environ. Microbiol. 72 793–801PubMedPubMedCentralGoogle Scholar
  74. Sergeant S, Rahbar E and Chilton FH 2016 Gamma-linolenic acid, dihommo-gamma linolenic, eicosanoids and inflammatory processes. Eur. J. Pharmacol. 785 77–86PubMedPubMedCentralGoogle Scholar
  75. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, et al. 2003 Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13 2498–2504PubMedPubMedCentralGoogle Scholar
  76. Sharma N, Akhade AS and Qadri A 2013 Sphingosine-1-phosphate suppresses TLR-induced CXCL8 secretion from human T cells. J. Leukocyte Biol. 93 521–528PubMedGoogle Scholar
  77. Shimizu J, Kubota T, Takada E, Takai K, Fujiwara N, Arimitsu N, Ueda Y, Wakisaka S, et al. 2016 Bifidobacteria abundance-featured gut microbiota compositional change in patients with Behcet’s disease. PLOS ONE 11 e0153746PubMedPubMedCentralGoogle Scholar
  78. Shivaji S 2017 We are not alone: a case for the human microbiome in extra intestinal diseases. Gut Pathogens 9 13PubMedPubMedCentralGoogle Scholar
  79. Sokol H, Leducq V, Aschard H, Pham HP, Jegou S, Landman C, Cohen D, Liguori G, et al. 2017 Fungal microbiota dysbiosis in IBD. Gut 66 1039–1048PubMedGoogle Scholar
  80. Stanisavljević S, Lukić J, Soković S, Mihajlovic S, Mostarica Stojković M, Miljković D and Golić N 2016 Correlation of gut microbiota composition with resistance to experimental autoimmune encephalomyelitis in rats. Front. Microbiol. 7 2005PubMedPubMedCentralGoogle Scholar
  81. Stearns JC, Lynch MDJ, Senadheera DB, Tenenbaum HC, Goldberg MB, Cvitkovitch DG, Croitoru K, Moreno-Hagelsieb G, et al. 2011 Bacterial biogeography of the human digestive tract. Sci. Rep. 1 170PubMedPubMedCentralGoogle Scholar
  82. Taniguchi N, Kishi T, Tohyama A and Tsuda M 1994 Bulb canker of garlic caused by Embellisia allii, newly found in Japan. Mycoscience 35 421–424Google Scholar
  83. Teweldemedhin M, Gebreyesus H, Atsbaha AH, Asgedom SW and Saravanan M 2017 Bacterial profile of ocular infections: a systematic review. BMC Ophthalmol. 17 212PubMedPubMedCentralGoogle Scholar
  84. Thomas PA and Kaliamurthy J 2013 Mycotic keratitis: epidemiology, diagnosis and management. Clin. Microbiol. Infect. 19 210–220PubMedGoogle Scholar
  85. Tlaskalova-Hogenova H, Stepankova R, Kozakova H, Hudcovic T, Vannucci L, Tuckova L, Rossmann P, Hrncir T, et al. 2011 The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol. Immunol. 8 110–120PubMedPubMedCentralGoogle Scholar
  86. Turpin W, Humblot C, Noordine M-L, Thomas M and Guyot J-P 2012 Lactobacillaceae and cell adhesion: genomic and functional screening. PLOS ONE 7 e38034PubMedPubMedCentralGoogle Scholar
  87. Vernocchi P, Del Chierico F, Quagliariello A, Ercolini D, Lucidi V and Putignani L 2017 A metagenomic and in silico functional prediction of gut microbiota profiles may concur in discovering new cystic fibrosis patient-targeted probiotics. Nutrients 9 1342PubMedCentralGoogle Scholar
  88. Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, Carlsson CM, Asthana S, et al. 2017 Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7 13537PubMedPubMedCentralGoogle Scholar
  89. Walker AW, Sanderson JD, Churcher C, Parkes GC, Hudspith BN, Rayment N, Brostoff J, Parkhill J, et al. 2011 High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 11 7PubMedPubMedCentralGoogle Scholar
  90. Wexler HM 2007 Bacteroides: the good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 20 593–621PubMedPubMedCentralGoogle Scholar
  91. Yılmaz-Semerci S, Demirel G and Taştekin A 2017 Wickerhamomyces anomalus blood stream infection in a term newborn with pneumonia. Turkish J. Pediatr. 59 349–351Google Scholar
  92. Yun JH, Yim DS, Kang JY, Kang BY, Shin EA, Chung MJ, Kim SD, Baek DH, et al. 2005 Identification of Lactobacillus ruminus SPM0211 isolated from healthy Koreans and its antimicrobial activity against some pathogens. Arch. Pharm. Res. 28 660–666PubMedGoogle Scholar
  93. Zackular JP, Baxter NT, Iverson KD, Sadler WD, Petrosino JF, Chen GY and Schloss PD 2013 The gut microbiome modulates colon tumorigenesis. mBio 4 e00692–13PubMedPubMedCentralGoogle Scholar
  94. Załęski A, Banaszkiewicz A and Walkowiak J 2013 Butyric acid in irritable bowel syndrome. Prz. Gastroenterol. 8 350–353PubMedPubMedCentralGoogle Scholar
  95. Zheng H, Chen M, Li Y, Wang Y, Wei L, Liao Z, Wang M, Ma F, et al. 2017 Modulation of gut microbiome composition and function in experimental colitis treated with sulfasalazine. Front Microbiol. 8 1703PubMedPubMedCentralGoogle Scholar
  96. Zinkernagel MS, Zysset-Burri DC, Keller I, Berger LE, Leichtle AB, Largiadèr CR, Fiedler GM and Wolf S 2017 Association of the intestinal microbiome with the development of neovascular age-related macular degeneration. Sci. Rep. 7 40826PubMedPubMedCentralGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Rajagopalaboopathi Jayasudha
    • 1
  • Sama Kalyana Chakravarthy
    • 1
  • Gumpili Sai Prashanthi
    • 1
  • Savitri Sharma
    • 1
  • Prashant Garg
    • 2
  • Somasheila I Murthy
    • 2
  • Sisinthy Shivaji
    • 1
  1. 1.Jhaveri Microbiology Centre, Prof. Brien Holden Eye Research CentreL. V. Prasad Eye InstituteHyderabadIndia
  2. 2.Tej Kohli Cornea InstituteL. V. Prasad Eye InstituteHyderabadIndia

Personalised recommendations