Skip to main content
Log in

A novel fluorescence microscopic approach to quantitatively analyse protein-induced membrane remodelling

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Membrane remodelling or the bending and rupture of the lipid bilayer occurs during diverse cellular processes such as cell division, synaptic transmission, vesicular transport, organelle biogenesis and sporulation. These activities are brought about by the localized change in membrane curvature, which in turn causes lipid-packing stress, of a planar lipid bilayer by proteins. For instance, vesicular transport processes are typically characterized by the cooperative recruitment of proteins that induce budding of a planar membrane and catalyse fission of the necks of membrane buds to release vesicles. The analysis of such membrane remodelling reactions has traditionally been restricted to electron microscopy–based approaches or force spectroscopic analysis of membrane tethers pulled from liposome-based model membrane systems. Our recent work has demonstrated the facile creation of tubular model membrane systems of supported membrane tubes (SMrTs), which mimic late-stage intermediates of typical vesicular transport reactions. This review addresses the nature of such an assay system and a fluorescence-intensity-based analysis of changes in tube dimensions that is indicative of the membrane remodelling capacity of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Antonny B 2006 Membrane deformation by protein coats. Curr. Opin. Cell Biol. 18 386–394

    Article  PubMed  CAS  Google Scholar 

  • Antonny B, Vanni S, Shindou H and Ferreira T 2015 From zero to six double bonds: phospholipid unsaturation and organelle function. Trends Cell Biol. 25 427–436

    Article  PubMed  CAS  Google Scholar 

  • Bashkirov PV, Akimov SA, Evseev AI, Schmid SL, Zimmerberg J and Frolov VA 2008 GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell 135 1276–1286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bassereau P, Sorre B and Lévy A 2014 Bending lipid membranes: experiments after W. Helfrich’s model. Adv. Colloid Interface Sci. 208 47–57

    Article  PubMed  CAS  Google Scholar 

  • Baumgart T, Capraro BR, Zhu C and Das SL 2011 Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Annu. Rev. Phys. Chem. 62 483–506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boucrot E, Pick A, Çamdere G, Liska N, Evergren E, McMahon HT and Kozlov MM 2012 Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent bar domains. Cell 149 124–136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dar S, Kamerkar SC and Pucadyil TJ 2015 A high-throughput platform for real-time analysis of membrane fission reactions reveals dynamin function. Nat. Cell Biol. 17 1588–1596

    Article  PubMed  CAS  Google Scholar 

  • Dar S, Kamerkar SC and Pucadyil TJ 2017 Use of the supported membrane tube assay system for real-time analysis of membrane fission reactions. Nat. Protocols 12 390–400

    Article  PubMed  CAS  Google Scholar 

  • Frolov VA, Lizunov VA, Dunina-Barkovskaya AY, Samsonov AV and Zimmerberg J 2003 Shape bistability of a membrane neck: a toggle switch to control vesicle content release. Proc. Natl. Acad. Sci. USA 100 8698–8703

    Article  PubMed  CAS  Google Scholar 

  • Holkar SS, Kamerkar SC and Pucadyil TJ 2015 Spatial control of epsin-induced clathrin assembly by membrane curvature. J. Biol. Chem. 290 14267–14276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hsieh W-T, Hsu C-J, Capraro BR, Wu T, Chen C-M, Yang S and Baumgart T 2012 Curvature sorting of peripheral proteins on solid-supported wavy membranes. Langmuir 28 12838–12843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inaba T et al. 2016 Phospholipase Cβ1 induces membrane tubulation and is involved in caveolae formation. Proc. Natl. Acad. Sci. USA 113 7834–7839

    Article  PubMed  CAS  Google Scholar 

  • Jung H, Robison AD and Cremer PS 2009 Detecting protein−ligand binding on supported bilayers by local ph modulation. J. Am. Chem. Soc. 131 1006–1014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kinuta M, Yamada H, Abe T, Watanabe M, Li S-A, Kamitani A, Yasuda T, Matsukawa T, Kumon H and Takei K 2002 Phosphatidylinositol 4,5-bisphosphate stimulates vesicle formation from liposomes by brain cytosol. Proc. Natl. Acad. Sci. USA 99 2842–2847

    Article  PubMed  CAS  Google Scholar 

  • Koster G, VanDuijn M, Hofs B and Dogterom M 2003 Membrane tube formation from giant vesicles by dynamic association of motor proteins. Proc. Natl. Acad. Sci. USA 100 15583–15588

    Article  PubMed  CAS  Google Scholar 

  • Kunding AH, Mortensen MW, Christensen SM and Stamou D 2008 A fluorescence-based technique to construct size distributions from single-object measurements: application to the extrusion of lipid vesicles. Biophys. J. 95 1176–1188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leduc C, Campàs O, Zeldovich KB, Roux A, Jolimaitre P, Bourel-Bonnet L, Goud B, Joanny J-F, Bassereau P and Prost J 2004 Cooperative extraction of membrane nanotubes by molecular motors. Proc. Natl. Acad. Sci. USA 101 17096–17101

    Article  PubMed  CAS  Google Scholar 

  • Morlot S, Galli V, Klein M, Chiaruttini N, Manzi J, Humbert F, Dinis L, Lenz M, Cappello G and Roux A 2012 Membrane shape at the edge of the dynamin helix sets location and duration of the fission reaction. Cell 151 619–629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neumann S, Pucadyil TJ and Schmid SL 2013 Analyzing membrane remodeling and fission using supported bilayers with excess membrane reservoir. Nat. Protocols 8 213–222

    Article  PubMed  CAS  Google Scholar 

  • Pucadyil TJ and Holkar SS 2016 Comparative analysis of adaptor-mediated clathrin assembly reveals general principles for adaptor clustering. Mol. Biol. Cell 27 3156–3163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pucadyil TJ and Schmid SL 2008 Real-time visualization of dynamin-catalyzed membrane fission and vesicle release. Cell 135 1263–1275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pucadyil TJ and Schmid SL 2010 Supported bilayers with excess membrane reservoir: a template for reconstituting membrane budding and fission. Biophys. J. 99 517–525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Renard H-F et al. 2015 Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis. Nature 517 493–496

    Article  PubMed  CAS  Google Scholar 

  • Rossier O, Cuvelier D, Borghi N, Puech PH and Langmuir ID 2003 Giant vesicles under flows: Extrusion and retraction of tubes. Langmuir 19 575–584

    Article  CAS  Google Scholar 

  • Roux A, Cappello G, Cartaud J, Prost J, Goud B and Bassereau P 2002 A minimal system allowing tubulation with molecular motors pulling on giant liposomes. Proc. Natl. Acad. Sci. USA 99 5394–5399

    Article  PubMed  CAS  Google Scholar 

  • Roux A, Koster G, Lenz M, Sorre B, Manneville J-B, Nassoy P and Bassereau P 2010 Membrane curvature controls dynamin polymerization. Proc. Natl. Acad. Sci. USA 107 4141–4146

    Article  PubMed  Google Scholar 

  • Shnyrova AV, Bashkirov PV, Akimov S, Pucadyil TJ, Zimmerberg J, Schmid SL and Frolov VA 2013 Geometric catalysis of membrane fission driven by flexible dynamin rings. Science 339 1433–1436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simunovic M et al. 2017 Friction mediates scission of tubular membranes scaffolded by BAR proteins. Cell 170 172–184.e11

    Google Scholar 

  • Sorre B, Callan-Jones A, Manzi J, Goud B, Prost J, Bassereau P and Roux A 2012 Nature of curvature coupling of amphiphysin with membranes depends on its bound density. Proc. Natl. Acad. Sci. USA 109 173–178

    Article  PubMed  Google Scholar 

  • Takei K, Haucke V, Slepnev V, Farsad K, Salazar M, Chen H and De Camilli P 1998 Generation of coated intermediates of clathrin-mediated endocytosis on protein-free liposomes. Cell 94 131–141

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

TJP acknowledges financial support from the Wellcome Trust–DBT India Alliance and the Howard Hughes Medical Institute. TJP was a Senior Fellow of the Wellcome Trust–DBT India Alliance and is currently an international scholar of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J Pucadyil.

Additional information

corresponding editor: xxxx

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pucadyil, T.J. A novel fluorescence microscopic approach to quantitatively analyse protein-induced membrane remodelling. J Biosci 43, 431–435 (2018). https://doi.org/10.1007/s12038-018-9767-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-018-9767-0

Keywords

Navigation