Skip to main content

Advertisement

Log in

Electromagnetic radiation 2450 MHz exposure causes cognition deficit with mitochondrial dysfunction and activation of intrinsic pathway of apoptosis in rats

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Electromagnetic radiation (EMR) can induce or modulate several neurobehavioral disorders. Duration and frequency of exposure of EMR is critical to develop cognitive disorders. Even though EMR-2450 is widely used, its effects on cognition in relation to mitochondrial function and apoptosis would provide better understanding of its pathophysiological effects. Therefore, a comparative study of different frequencies of EMR exposure would give valuable information on effects of discrete frequencies of EMR on cognition. Male rats were exposed to EMR (900, 1800 and 2450 MHz) every day for 1 h for 28 consecutive days. The cognitive behavior in terms of novel arm entries in Y-maze paradigm was evaluated every week after 1 h to last EMR exposure. Animals exposed to EMR-2450 MHz exhibited significant cognitive deficits. EMR-2450 MHz caused loss of mitochondrial function and integrity, an increase in amyloid beta expression. There was release of cytochrome-c and activation of apoptotic factors such as caspase-9 and -3 in the hippocampus. Further, there was decrease in levels of acetylcholine, and increase in activity of acetyl cholinesterase, indicating impairment of cholinergic system. Therefore, exposure of EMR-2450 in rats caused cognitive deficit with related pathophysiological changes in mitochondrial and cholinergic function, and amyloidogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Afrasiabi A, Riazi GH, Abbasi S, Dadras A, Ghalandari B, Seidkhani H, Modaresi SM, Masoudian N, Amani A and Ahmadian S 2014 Synaptosomal acetylcholinesterase activity variation pattern in the presence of electromagnetic fields. Int. J. Biol. Macromol. 65 8–15

    Article  CAS  PubMed  Google Scholar 

  • Balanis CA 1997 Antenna theory, analysis and design 2nd edition (Wiley)

    Google Scholar 

  • Beers Jr RF and Sizer IW 1952 A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195 133–140

    CAS  PubMed  Google Scholar 

  • Borutaite V, Toleikis A and Brown GC, 2013 In the eye of the storm: mitochondrial damage during heart and brain ischaemia. FEBS J. 280 4999–5014

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM 1976 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 248–254

    Article  CAS  PubMed  Google Scholar 

  • Brahima S 2015 Assignment and use of radio spectrum-policy guideline and economic aspects. Columbia University, USA

    Google Scholar 

  • Cai ZL, Wang CY, Jiang ZJ, Li HH, Liu WX, Gong LW, Xiao P and Li CH 2013 Effects of cordycepin on Y-maze learning task in mice. Eur. J. Pharmacol. 714 249–253

    Article  CAS  PubMed  Google Scholar 

  • Chen HW, He XH, Yuan R, Wei BJ, Chen Z, Dong JX and Wang J, 2016 Sesquiterpenes and a monoterpenoid with acetylcholinesterase (AchE) inhibitory activity from Valeriana officinalis var. latiofolia in vitro and in vivo. Fitoterapia 110 142–149

    Article  CAS  PubMed  Google Scholar 

  • Chen JX and Yan SS, 2010 Role of mitochondrial amyloid-β in Alzheimer’s disease. J. Alzheimer Dis. 20 569–578.

    Article  Google Scholar 

  • Choi Y and Choi Y 2016 Effects of electromagnetic radiation from smartphones on learning ability and hippocampal progenitor cell proliferation in mice. Osong Public Health Res. Perspect. 7 12–17

    Article  PubMed  Google Scholar 

  • Conrad CD, Galea LA, Kuroda Y and McEwen BS 1997 Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine pretreatment. Behav. Neurosci. 110 1321–1334

    Article  Google Scholar 

  • Diana A, Simić G, Sinforiani E, Orrù N, Pichiri G and Bono G 2008 Mitochondria morphology and DNA content upon sub lethal exposure to beta amyloid (1–42) peptide. Collegium Antropol. 32 51–58

    CAS  Google Scholar 

  • Dogan M, Turtay M, Oquzturk H, Samdanie E, Turkoz Y, Tasdemir S, Alkan A and Bakir S 2012 Effects of electromagnetic radiation produced by 3G mobile phones on rat brain: magnetic resonance spectroscopy, biochemical and histopathological evaluation. Hum. Exp. Toxicol. 31 557–564

    Article  CAS  PubMed  Google Scholar 

  • Dubreuil D, Jay T and Edeline JM 2003 Head-only exposure to GSM 900-MHz electromagnetic fields does not alter rat’s memory in spatial and non-spatial tasks. Behav. Brain Res. 145 51–61

    Article  PubMed  Google Scholar 

  • Fiske CH and Subbarao Y 1925 The colorimetric determination of phosphorus. J. Biol. Chem. 66 375–400

    CAS  Google Scholar 

  • Fontolliet G 1996 Traite d’Electricite, Vol. XVIII: Systems de telecommunications (Presses Polytechniques et Universitaires Romandes)

  • Fu Z, Yang J, Wei Y and Li J 2016 Effects of piceatannol and pterostilbene against β-amyloid-induced apoptosis on the PI3K/Akt/Bad signaling pathway in PC12 cells. Food Funct. 7 1014–1023

    Article  CAS  PubMed  Google Scholar 

  • Gandhi OP 1990 Biological effects and medical applications of electromagnetic energy (Prentice Hall, Upper Saddle River)

    Google Scholar 

  • Glenner GG and Wong CW 1984 Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120 885–890

    Article  CAS  PubMed  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS and Tannenbaum SR 1982 Analysis of nitrate, nitrite, and nitrate in biological fluids. Anal. Biochem. 126 131–138

    Article  CAS  PubMed  Google Scholar 

  • Griffiths DE and Houghton RL 1974 Studies on energy linked reactions, modified mitochondrial ATPase of oligomycin-resistant mutants of Saccharomyces cerevisiae. Eur. J. Biochem. 46 157–167

    Article  CAS  PubMed  Google Scholar 

  • Grill JD and Cummings JL 2010 Novel targets for Alzheimer’s disease treatment. Expert Rev. Neurother. 10 711–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo C, Li S, Chen X and Zhang D 2013 Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res. 8 2003–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hao YH, Zhao L and Peng RY 2015 Effects of microwave radiation on brain energy metabolism and related mechanisms. Military Med. Res. 2 4

    Article  Google Scholar 

  • Hidisoglu E, Gok DK, Akpinar D, Uysal F, Akkoyunlu G, Ozen S, Agar A and Yargicoglu P 2016 2100 MHz electromagnetic fields have different effects on visual evoked potentials and oxidant/antioxidant status depending on exposure duration. Brain Res. 1635 1–11

    Article  CAS  PubMed  Google Scholar 

  • Himmelheber AM, Sarter M and Bruno JP 2000 Increases in cortical acetylcholine release during sustained attention performance in rats. Brain Res. 9 313–325

    CAS  Google Scholar 

  • Holloway CL, Mckenna PM, Dalke RA, Perala RA and Devor CL 2002 Time- domain modeling characterization, measurements of semi-anechoic and anechoic electromagnetic test chambers. IEEE Trans. Electromagn. Compat. 44 1

    Google Scholar 

  • Hossmann KA and Hermann DM 2003 Effects of electromagnetic radiation of mobile phones on the central nervous system. Bioelectromagneticx 24 49–62

    Article  CAS  Google Scholar 

  • Huang SG 2002 Development of a high throughput screening assay for mitochondrial membrane potential in living cells. J. Biomol. Screen. 7 383–389

    Article  CAS  PubMed  Google Scholar 

  • Huber R, Treyer V, Schuderer J, Berthold T, Buck A, Kuster N, Landolt HP and Achermann P 2005 Exposure to pulse-modulated radio frequency electromagnetic fields affects regional cerebral blood flow. Eur. J. Neurosci. 21 1000–1006

    Article  CAS  PubMed  Google Scholar 

  • Jänicke RU, Ng P, Sprengart ML and Porter AG 1998 Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J. Biol. Chem. 273 15540–15545

    Article  PubMed  Google Scholar 

  • Jiang DP, Li J, Zhang J, Xu SL, Kuang F, Lang HY, Wang YF, An GZ, Li JH and Guo GZ 2013 Electromagnetic pulse exposure induces over expression of beta amyloid protein in rats. Arch. Med. Res. 44 178–184

    Article  CAS  PubMed  Google Scholar 

  • Joshi R, Garabadu D, Teja GR and Krishnamurthy S 2014 Silibinin ameliorates LPS-induced memory deficits in experimental animals. Neurobiol. Learn Mem. 16 117–131

    Article  Google Scholar 

  • Kakkar P, Das B and Viswanathan PN 1984 A modified spectrophotometric assay of superoxide dismutase. Indian J. Biochem. Biophys. 21 130–132

    CAS  PubMed  Google Scholar 

  • Kamboj SS, Kumar V, Kamboj A and Sandhir R, 2008 Mitochondrial oxidative stress and dysfunction in rat brain induced by carbofuran exposure. Cell. Mol. Neurobiol. 28 961–969

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy S, Garabadu D and Joy KP 2013 Risperidone ameliorates post-traumatic stress disorder-like symptoms in modified stress re-stress model. Neuropharmacology 75 62–77

    Article  CAS  PubMed  Google Scholar 

  • Lai H, Horita A, Chon CK and Gey W 1987 Low level microwave irradiations affect central cholinergic activity in the rat. J. Neurochem. 48 440–445

    Article  Google Scholar 

  • Langrange X, Godlewski P, Tabbane S and Reseaux 1999 GSM-DCS.4mem edition. Hermes Science Publications Section 6 2.1.2

  • Levin ED 2015 Learning about cognition risk with the radial-arm maze in the developmental neurotoxicology battery. Neurotoxicol. Teratol. 52 88–92

    Article  CAS  Google Scholar 

  • Li Y, Shi C, Lu G, Xu Q, and Liu S 2012 Effects of electromagnetic radiation on spatial memory and synapses in rat hippocampal CA1. Neural Regen. Res. 7 1248–1255

    PubMed  PubMed Central  Google Scholar 

  • Lowry OH, Rosenborough NJ, Farr AL and Randall RJ 1951 Protein measurement with folin phenol reagent. J. Biol. Chem. 193 265–275

    CAS  PubMed  Google Scholar 

  • Lykhmus O, Gergalova G, Koval L, Zhmak M and Komisarenko SM, 2014 Mitochondria express several nicotinic acetylcholine receptor subtypes to control various pathways of apoptosis induction. Int. J. Biochem. Cell Biol. 53 246–252

    Article  CAS  PubMed  Google Scholar 

  • Man YG, Zhou RG and Zhao B 2015 Efficacy of rutin in inhibiting neuronal apoptosis and cognitive disturbances in sevoflurane or propofol exposed neonatal mice. Int. J. Clin. Exp. Med. 8 14397–14340

    Google Scholar 

  • McEwen BS, Conrad CD, Kuroda Y, Frankfurt M, Magarinos AM and McKittrick C 1997 Prevention of stress-induced morphological and cognitive consequences. Eur. Neurophycopharmacol. 7 323–328

    Article  Google Scholar 

  • Muthuraju S, Maiti P, Solanki P, Sharma AK, Amitabh S, Prasad D and Ilavazhagan G 2009 Acetylcholinesterase inhibitors enhance cognitive functions in rats following hypobaric hypoxia. Behav. Brain Res. 203 1–14

    Article  CAS  PubMed  Google Scholar 

  • Narayanan SN, Kumar RS, Karun KM, Nayak SB and Bhat PG 2015 Possible cause for altered spatial cognition of prepubescent rats exposed to chronic radiofrequency electromagnetic radiation. Metab. Brain Dis. 30 1193–1206

    Article  CAS  PubMed  Google Scholar 

  • Naziroglu M, Celik O, Ozgul C, Cig B, Dogan S, Bal R, Gumral N, Rodriguez AB and Pariente JA 2012 Melatonin modulates wireless (2.45 GHz)-induced oxidative injury through TRPM2 and voltage gated Ca (2+) channels in brain and dorsal root ganglion in rat. Physiol. Behav. 105 683–669

    Article  Google Scholar 

  • Neve RL, Dawes LR, Yankner BA, Benowitz LL, Rodriguez W and Higgins GA 1990 Genetics and biology of the Alzheimer amyloid precursor. Prog. Brain Res. 86 257–267

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa H, Ohishi N and Yagi K 1979 Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95 351–358

    Article  CAS  PubMed  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S and Zhivotovsky B 2007 Mitochondria, oxidative stress and cell death. Apoptosis 12 913–922

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G and Watson C 1986 The rat brain in stereotaxic coordinates (Academic Press, Cambridge)

    Google Scholar 

  • Pedersen PL, Greenawalt JW, Reynafarje B, Hullihen J, Decker GL, Soper JW and Bustamente E 1978 Preparation and characterization of mitochondria and sub mitochondrial particles of rat liver-derived tissues. Methods Cell Biol. 20 411–481

    Article  CAS  PubMed  Google Scholar 

  • Pinho CM, Teixeira PF and Glaser E 2014 Mitochondrial import and degradation of amyloid-β peptide. Biochim. Biophys. Acta 1837 1069–1074

    Article  CAS  PubMed  Google Scholar 

  • Pochynyuk OM, Zaika OL and Lukyanetz EA 2002 Role of mitochondria in the generation of acetylcholine-induced calcium transients in rat chromaffin cells. Neurophysiology 34 204–206

    Article  CAS  Google Scholar 

  • Poimenova A, Markaki E, Rahiotis C and Kitraki E 2010 Corticosterone-regulated actions in the rat brain are affected by perinatal exposure to low dose of bisphenol A. Neuroscience 19 741–749

    Article  Google Scholar 

  • Pozueta, J, Lefort R and Shelanski ML 2013 Synaptic changes in Alzheimer’s disease and its models. Neuroscience 251 51–65

    Article  CAS  PubMed  Google Scholar 

  • Repacholi MH, Basten A, Gebski V, Noonan D, Finnie J and Harris AW 1997 Lymphomas in Eµ-Pim 1 transgenic mice exposed to pulsed 900 MHz electromagnetic fields. Rad. Res. 147 631–640

    Article  CAS  Google Scholar 

  • Sally LO and Margaret AJ 1989 Methods of microphotometric assay of succinate dehydrogenase and cytochrome-C oxidase activities for use on human skeletal muscle. Histochem. J. 21 545–555

    Article  Google Scholar 

  • Samaiya PK, Narayan G, Kumar A and Krishnamurthy S 2016 Neonatal anoxia leads to time dependent progression of mitochondrial linked apoptosis in rat cortex and associated long term sensorimotor deficits. Int. J. Dev. Neurosci. 52 55–65

    Article  CAS  PubMed  Google Scholar 

  • Santini E and Turner KL 2015 Mitochondrial superoxide contributes to hippocampal synaptic dysfunction and memory deficits in Angelman syndrome model mice. J. Neurosci. 35 16213–16220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro BL, Feigal RJ and Lam FH 1979 Mitochondrial NADH dehydrogenase in cystic fibrosis. Proc. Natl. Acad. Sci. USA 76 2979–2983

    Article  CAS  Google Scholar 

  • Storrie B and Madden EA 1990 Isolation of subcellular organelles. Methods Enzymol. 182 203–225

    CAS  Google Scholar 

  • Suleyman D, Akdag MZ, Kizil G, Kizil M, Cakir DU and Yokus B 2012 Effect of 900 MHz radiofrequency radiation on beta amyloid protein, protein carbonyl ad malondialdehyde in the brain. Electromag. Biol. Med. 31 67–74

    Article  Google Scholar 

  • Sundermann F, Marzouk A, Hopfer S, Zaharia O and Reid M 1985 Increased lipid peroxidation in tissues of nickel chloride-treated rats. Ann. Clin. Lab. Sci. 15 229–236

    Google Scholar 

  • Tanaka D, Nakada K, Takao K, Ogasawara E, Kasahara A, Sato A, Yonekawa H, Miyakawa T and Hayashi J 2008 Normal mitochondrial respiratory function is essential for spatial remote memory in mice. Mol. Brain. 16 1–21

    Google Scholar 

  • Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, Szoeke C, Macaulay SL, Martins R, Maruff P, Ames D, Rowe CC and Masters CL 2013 Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer disease: a prospective cohort study. Lancet Neurol. 12 357–367

    Article  CAS  PubMed  Google Scholar 

  • Vorhees CV and Williams MT 2006 Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 1 848–858

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang B and Lai H 2000 Acute exposure to pulsed 2450-MHz microwaves affects water-maze performance of rats. Bioelectromagnetics 21 52–56

    Article  CAS  PubMed  Google Scholar 

  • Webster KA 2012 Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species. Future Cardiol. 8 863–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Zhou Z, Zhang L, Yu Z, Zhang W, Wang Y, Wang X, Li M, Chen Y, Chen C, He M, Zhang G and Zhong M 2010 Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons. Brain Res. 22 189–196

    CAS  Google Scholar 

  • Yang Y, Zhang M, Kang X, Jiang C, Zhang H, Wang P and Li J 2015 Impaired adult hippocampal neurogenesis and cognitive ability in a mouse model of intrastriatal hemorrhage. Neurosci. Lett. 599 133–139

    Article  CAS  PubMed  Google Scholar 

  • Zhang JQ, Gao BW, Wang J, Ren QL, Chen JF, Ma Q, Zhang ZJ. and Xing BS 2016 Critical role of FoxO1 in granulosa cell apoptosis caused by oxidative stress and protective effects of grape seed procyanidin B2. Oxid. Med. Cell Longev. 6147345 16

    Google Scholar 

  • Zhao L, Peng RY, Wang SM, Wang LF, Gao YB, Dong J, Li X and Su ZT 2012 Relationship between cognition function and hippocampus structure after long-term microwave exposure. Biomed. Environ. Sci. 2 182–188

    Google Scholar 

  • Zhao TY, Zou SP and Knapp PE 2007 Exposure of cell phone radiation upregulates apoptosis genes in primary cultures of neurons and astrocytes. Neurosci. Lett. 412 34–38

    Article  CAS  PubMed  Google Scholar 

  • Zhi WJ, Peng RY, Li HJ, et al. 2017 Microwave radiation leading to shrinkage of dendritic spines in hippocampal neurons mediated by SNK-SPAR pathway. Brain Res. 1679 134–143

    Article  PubMed  Google Scholar 

  • Zoukhri D and Kublin CL 2001 Impaired neurotransmitter release from lacrimal and salivary gland nerves of a murine model of Sjögren’s syndrome. Invest. Ophthalmol. Vis. Sci. 42 925–932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo L, Hemmelgarn BT, Chuang CC and Best TM 2015 The role of oxidative stress-induced epigenetic alterations in amyloid- production in Alzheimer’s disease. Oxid. Med. Cell. Longev. https://doi.org/10.1155/2015/604658

    Google Scholar 

Download references

Acknowledgements

SKG is thankful to Indian Institute of Technology–Banaras Hindu University (IIT-BHU), Varanasi, India, for the fellowship as teaching assistant. All animal experiments were carried out according to the principles stated in guidelines of laboratory animal care (National Research Council US Committee for the Update of the Guide for the Care and Use of Laboratory Animals 2011 guidelines). All the experimental methods were approved by the Institutional animal ethical committee, Banaras Hindu University (Approval No.: Dean/2015/CAEC/1414).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sairam Krishnamurthy.

Additional information

Corresponding editor: Neeraj Jain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Mesharam, M.K. & Krishnamurthy, S. Electromagnetic radiation 2450 MHz exposure causes cognition deficit with mitochondrial dysfunction and activation of intrinsic pathway of apoptosis in rats. J Biosci 43, 263–276 (2018). https://doi.org/10.1007/s12038-018-9744-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-018-9744-7

Keywords

Navigation