Advertisement

Journal of Biosciences

, Volume 42, Issue 4, pp 613–621 | Cite as

Small phosphatidate phosphatase (TtPAH2) of Tetrahymena complements respiratory function and not membrane biogenesis function of yeast PAH1

  • Anoop Narayana Pillai
  • Sushmita Shukla
  • Sudhanshu Gautam
  • Abdur RahamanEmail author
Article

Abstract

Phosphatidate phosphatases (PAH) play a central role in lipid metabolism and intracellular signaling. Herein, we report the presence of a low-molecular-weight PAH homolog in the single-celled ciliate Tetrahymena thermophila. In vitro phosphatase assay showed that TtPAH2 belongs to the magnesium-dependent phosphatidate phosphatase (PAP1) family. Loss of function of TtPAH2 did not affect the growth of Tetrahymena. Unlike other known PAH homologs, TtPAH2 did not regulate lipid droplet number and ER morphology. TtPAH2 did not rescue growth and ER/nuclear membrane defects of the pah1∆ yeast cells, suggesting that the phosphatidate phosphatase activity of the protein is not sufficient to perform these cellular functions. Surprisingly, TtPAH2 complemented the respiratory defect in the pah1∆ yeast cells indicating a specific role of TtPAH2 in respiration. Overall, our results indicate that TtPAH2 possesses the minimal function of PAH protein family in respiration. We suggest that the amino acid sequences absent from TtPAH2 but present in all other known PAH homologs are critical for lipid homeostasis and membrane biogenesis.

Keywords

Lipid droplet lipin PAP phosphatidate phosphatase Tetrahymena 

Notes

Acknowledgements

We thank Dr Doug Chalker (Washington University) for providing pIGF vector. We also thank Symeon Siniossoglou (University of Cambridge) for providing us pah1∆ yeast strain and PUS-GFP plasmid. AN was supported by Council of Scientific and Industrial Research (CSIR) fellowship. Grant support from DBT (BT/PR14643/BRB/10/862/2010) is gratefully acknowledged.

Supplementary material

12038_2017_9712_MOESM1_ESM.docx (806 kb)
Supplementary material 1 (DOCX 806 kb)

References

  1. Adeyo O, Horn PJ, Lee S, Binns DD, Chandrahas A, Chapman KD and Goodman JM 2011 The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. J. Cell Biol. 192 1043–1055CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bahmanyar S, Biggs R, Schuh AL, Desai A, Müller-Reichert T, Audhya A, Dixon JE and Oegema K 2014 Spatial control of phospholipid flux restricts endoplasmic reticulum sheet formation to allow nuclear envelope breakdown. Genes Dev. 28 121–126CrossRefPubMedPubMedCentralGoogle Scholar
  3. Carman GM and Han G 2009 Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis. J. Biol. Chem. 284 2593–2597CrossRefPubMedPubMedCentralGoogle Scholar
  4. Craddocka CP, Adams N, Bryanta FM, Kurup S and Eastmonda PJ 2015 Regulation of endomembrane biogenesis in Arabidopsis by phospatidic acid hydrolase. Plant Signal Behav. 10 e1065367CrossRefGoogle Scholar
  5. Finck BN, Gropler MC Chen Z, Leone TC, Croce MA, Harris TE, Jr JCL and Kelly DP 2006 Lipin 1 is an inducible amplifier of the hepatic PGC-1 a/PPAR a regulatory pathway. Cell Metab. 4 199–210CrossRefPubMedGoogle Scholar
  6. Gey U, Czupalla C, Hoflack B, Ro G and Krause-buchholz U 2008 Yeast pyruvate dehydrogenase complex is regulated by a concerted activity of two kinases and two phosphatases. J. Biol. Chem. 283 9759–9767CrossRefPubMedGoogle Scholar
  7. Golden A, Liu J and Cohen-Fix O 2009 Inactivation of the C. elegans lipin homolog leads to ER disorganization and to defects in the breakdown and reassembly of the nuclear envelope. J. Cell Sci. 122 1970–1978CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gorjánácz M and Mattaj IW 2009 Lipin is required for efficient breakdown of the nuclear envelope in Caenorhabditis elegans. J. Cell Sci. 122 1963–1969CrossRefPubMedGoogle Scholar
  9. Grimsey N, Han G, Hara LO, Rochford JJ, Carman GM and Siniossoglou S 2008 Temporal and spatial regulation of the temporal and spatial regulation of the phosphatidate. J. Biol. Chem. 283 29166–29174CrossRefPubMedPubMedCentralGoogle Scholar
  10. Han GS, Wu WI and Carman GM 2006 The Saccharomyces cerevisiae lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme. J. Biol. Chem. 281 9210–9218CrossRefPubMedPubMedCentralGoogle Scholar
  11. Han GS, Siniossoglou S and Carman GM 2007 The cellular functions of the yeast lipin homolog Pah1p are dependent on its phosphatidate phosphatase activity. J. Biol. Chem. 282 37026–37035CrossRefPubMedGoogle Scholar
  12. He J, Zhang F, Tay LWR, Boroda S, Nian W, Levental KR, Levental I, Harris TE, Chang JT and Du G 2017 Lipin-1 regulation of phospholipid synthesis maintains endoplasmic reticulum homeostasis and is critical for triple-negative breast cancer cell survival. FASEB J. 31 2893–2904CrossRefPubMedGoogle Scholar
  13. Gaertig J, Gu L, Hai B and Gorovsky M 1994 High frequency vector-mediated transformation and gene replacement in Tetrahymena. Nucleic Acids Res. 22 5391–5398CrossRefPubMedPubMedCentralGoogle Scholar
  14. Joseph L Campbell, Alexander Lorenz, Keren L Witkin, Thomas Hays Josef Loidl and O Cohen-Fix 2006 Yeast nuclear envelope subdomains with distinct abilities to resist membrane expansion. Mol. Biol. Cell 17 1768–1778CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kim HE, Bae E, Jeong DY, Kim MJ, Jin WJ, Park SW, Han GS, Carman GM, Koh E and Kim KS 2013 Lipin1 regulates PPAR gamma transcriptional activity. Biochem. J. 453 49–60CrossRefPubMedPubMedCentralGoogle Scholar
  16. Müller-felber W, Venkateswaran R, Ogier H, Desguerre I and Altuzarra C 2010 Lpin1 gene mutations: a major cause of severe rhabdomyolysis in early childhood. Hum. Mutat. 1573 1564–1573Google Scholar
  17. Nakamura Y, Koizumi R, Shui G, Shimojima M, Wenk MR and Ito T 2009 Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically. Proc. Natl. Acad. Sci. USA 106 20978–20983CrossRefPubMedPubMedCentralGoogle Scholar
  18. Park Y, Han G, Mileykovskaya E, Garrett TA and Carman GM 2015 Altered lipid synthesis by lack of yeast Pah1 phosphatidate phosphatase reduces chronological life span. J. Biol. Chem. 290 25382–25394CrossRefPubMedPubMedCentralGoogle Scholar
  19. Rahaman A, Srinivasan N, Shamala N and Shaila MS 2003 The fusion core complex of the peste des petits ruminants virus is a six-helix bundle assembly. Biochem. J. 42 922–931CrossRefGoogle Scholar
  20. Rahaman A, Elde NC and Turkewitz AP 2008 A dynamin-related protein required for nuclear remodeling in Tetrahymena. Curr. Biol. 18 227–1233CrossRefGoogle Scholar
  21. Reue K and Brindley DN 2008 Multiple roles for lipins/phosphatidate phosphatase enzymes in lipid metabolism. J. Lipid Res. 49 2493–2503CrossRefPubMedPubMedCentralGoogle Scholar
  22. Santos-Rosa H, Leung J, Grimsey N, Peak-Chew S and Siniossoglou S 2005 The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J. 24 1931–1941CrossRefPubMedPubMedCentralGoogle Scholar
  23. Sciorra VA and Morris AJ 2002 Roles for lipid phosphate phosphatases in regulation of cellular signaling. Biochim. Biophys. Acta 1582 45–51CrossRefPubMedGoogle Scholar
  24. Siniossoglou S, Santos-rosa H, Rappsilber J, Mann M and Hurt E. 1998 A novel complex of membrane proteins required for formation of a spherical nucleus. EMBO J. 17 6449–6464CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ugrankar R, Liu Y, Provaznik J, Schmitt S and Lehmann M 2011 Lipin is a central regulator of adipose tissue development and function in Drosophila melanogaster. Mol. Cell Biol. 31 1646–1656CrossRefPubMedPubMedCentralGoogle Scholar
  26. Wang X, Devaiah SP, Zhang W and Welti R 2006 Signaling functions of phosphatidic acid. Prog. Lipid Res. 45 250–278CrossRefPubMedGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  1. 1.National Institute of Science Education and Research (NISER)BhubaneswarIndia

Personalised recommendations