Small phosphatidate phosphatase (TtPAH2) of Tetrahymena complements respiratory function and not membrane biogenesis function of yeast PAH1
- 156 Downloads
- 1 Citations
Abstract
Phosphatidate phosphatases (PAH) play a central role in lipid metabolism and intracellular signaling. Herein, we report the presence of a low-molecular-weight PAH homolog in the single-celled ciliate Tetrahymena thermophila. In vitro phosphatase assay showed that TtPAH2 belongs to the magnesium-dependent phosphatidate phosphatase (PAP1) family. Loss of function of TtPAH2 did not affect the growth of Tetrahymena. Unlike other known PAH homologs, TtPAH2 did not regulate lipid droplet number and ER morphology. TtPAH2 did not rescue growth and ER/nuclear membrane defects of the pah1∆ yeast cells, suggesting that the phosphatidate phosphatase activity of the protein is not sufficient to perform these cellular functions. Surprisingly, TtPAH2 complemented the respiratory defect in the pah1∆ yeast cells indicating a specific role of TtPAH2 in respiration. Overall, our results indicate that TtPAH2 possesses the minimal function of PAH protein family in respiration. We suggest that the amino acid sequences absent from TtPAH2 but present in all other known PAH homologs are critical for lipid homeostasis and membrane biogenesis.
Keywords
Lipid droplet lipin PAP phosphatidate phosphatase TetrahymenaNotes
Acknowledgements
We thank Dr Doug Chalker (Washington University) for providing pIGF vector. We also thank Symeon Siniossoglou (University of Cambridge) for providing us pah1∆ yeast strain and PUS-GFP plasmid. AN was supported by Council of Scientific and Industrial Research (CSIR) fellowship. Grant support from DBT (BT/PR14643/BRB/10/862/2010) is gratefully acknowledged.
Supplementary material
References
- Adeyo O, Horn PJ, Lee S, Binns DD, Chandrahas A, Chapman KD and Goodman JM 2011 The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. J. Cell Biol. 192 1043–1055CrossRefPubMedPubMedCentralGoogle Scholar
- Bahmanyar S, Biggs R, Schuh AL, Desai A, Müller-Reichert T, Audhya A, Dixon JE and Oegema K 2014 Spatial control of phospholipid flux restricts endoplasmic reticulum sheet formation to allow nuclear envelope breakdown. Genes Dev. 28 121–126CrossRefPubMedPubMedCentralGoogle Scholar
- Carman GM and Han G 2009 Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis. J. Biol. Chem. 284 2593–2597CrossRefPubMedPubMedCentralGoogle Scholar
- Craddocka CP, Adams N, Bryanta FM, Kurup S and Eastmonda PJ 2015 Regulation of endomembrane biogenesis in Arabidopsis by phospatidic acid hydrolase. Plant Signal Behav. 10 e1065367CrossRefGoogle Scholar
- Finck BN, Gropler MC Chen Z, Leone TC, Croce MA, Harris TE, Jr JCL and Kelly DP 2006 Lipin 1 is an inducible amplifier of the hepatic PGC-1 a/PPAR a regulatory pathway. Cell Metab. 4 199–210CrossRefPubMedGoogle Scholar
- Gey U, Czupalla C, Hoflack B, Ro G and Krause-buchholz U 2008 Yeast pyruvate dehydrogenase complex is regulated by a concerted activity of two kinases and two phosphatases. J. Biol. Chem. 283 9759–9767CrossRefPubMedGoogle Scholar
- Golden A, Liu J and Cohen-Fix O 2009 Inactivation of the C. elegans lipin homolog leads to ER disorganization and to defects in the breakdown and reassembly of the nuclear envelope. J. Cell Sci. 122 1970–1978CrossRefPubMedPubMedCentralGoogle Scholar
- Gorjánácz M and Mattaj IW 2009 Lipin is required for efficient breakdown of the nuclear envelope in Caenorhabditis elegans. J. Cell Sci. 122 1963–1969CrossRefPubMedGoogle Scholar
- Grimsey N, Han G, Hara LO, Rochford JJ, Carman GM and Siniossoglou S 2008 Temporal and spatial regulation of the temporal and spatial regulation of the phosphatidate. J. Biol. Chem. 283 29166–29174CrossRefPubMedPubMedCentralGoogle Scholar
- Han GS, Wu WI and Carman GM 2006 The Saccharomyces cerevisiae lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme. J. Biol. Chem. 281 9210–9218CrossRefPubMedPubMedCentralGoogle Scholar
- Han GS, Siniossoglou S and Carman GM 2007 The cellular functions of the yeast lipin homolog Pah1p are dependent on its phosphatidate phosphatase activity. J. Biol. Chem. 282 37026–37035CrossRefPubMedGoogle Scholar
- He J, Zhang F, Tay LWR, Boroda S, Nian W, Levental KR, Levental I, Harris TE, Chang JT and Du G 2017 Lipin-1 regulation of phospholipid synthesis maintains endoplasmic reticulum homeostasis and is critical for triple-negative breast cancer cell survival. FASEB J. 31 2893–2904CrossRefPubMedGoogle Scholar
- Gaertig J, Gu L, Hai B and Gorovsky M 1994 High frequency vector-mediated transformation and gene replacement in Tetrahymena. Nucleic Acids Res. 22 5391–5398CrossRefPubMedPubMedCentralGoogle Scholar
- Joseph L Campbell, Alexander Lorenz, Keren L Witkin, Thomas Hays Josef Loidl and O Cohen-Fix 2006 Yeast nuclear envelope subdomains with distinct abilities to resist membrane expansion. Mol. Biol. Cell 17 1768–1778CrossRefPubMedPubMedCentralGoogle Scholar
- Kim HE, Bae E, Jeong DY, Kim MJ, Jin WJ, Park SW, Han GS, Carman GM, Koh E and Kim KS 2013 Lipin1 regulates PPAR gamma transcriptional activity. Biochem. J. 453 49–60CrossRefPubMedPubMedCentralGoogle Scholar
- Müller-felber W, Venkateswaran R, Ogier H, Desguerre I and Altuzarra C 2010 Lpin1 gene mutations: a major cause of severe rhabdomyolysis in early childhood. Hum. Mutat. 1573 1564–1573Google Scholar
- Nakamura Y, Koizumi R, Shui G, Shimojima M, Wenk MR and Ito T 2009 Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically. Proc. Natl. Acad. Sci. USA 106 20978–20983CrossRefPubMedPubMedCentralGoogle Scholar
- Park Y, Han G, Mileykovskaya E, Garrett TA and Carman GM 2015 Altered lipid synthesis by lack of yeast Pah1 phosphatidate phosphatase reduces chronological life span. J. Biol. Chem. 290 25382–25394CrossRefPubMedPubMedCentralGoogle Scholar
- Rahaman A, Srinivasan N, Shamala N and Shaila MS 2003 The fusion core complex of the peste des petits ruminants virus is a six-helix bundle assembly. Biochem. J. 42 922–931CrossRefGoogle Scholar
- Rahaman A, Elde NC and Turkewitz AP 2008 A dynamin-related protein required for nuclear remodeling in Tetrahymena. Curr. Biol. 18 227–1233CrossRefGoogle Scholar
- Reue K and Brindley DN 2008 Multiple roles for lipins/phosphatidate phosphatase enzymes in lipid metabolism. J. Lipid Res. 49 2493–2503CrossRefPubMedPubMedCentralGoogle Scholar
- Santos-Rosa H, Leung J, Grimsey N, Peak-Chew S and Siniossoglou S 2005 The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J. 24 1931–1941CrossRefPubMedPubMedCentralGoogle Scholar
- Sciorra VA and Morris AJ 2002 Roles for lipid phosphate phosphatases in regulation of cellular signaling. Biochim. Biophys. Acta 1582 45–51CrossRefPubMedGoogle Scholar
- Siniossoglou S, Santos-rosa H, Rappsilber J, Mann M and Hurt E. 1998 A novel complex of membrane proteins required for formation of a spherical nucleus. EMBO J. 17 6449–6464CrossRefPubMedPubMedCentralGoogle Scholar
- Ugrankar R, Liu Y, Provaznik J, Schmitt S and Lehmann M 2011 Lipin is a central regulator of adipose tissue development and function in Drosophila melanogaster. Mol. Cell Biol. 31 1646–1656CrossRefPubMedPubMedCentralGoogle Scholar
- Wang X, Devaiah SP, Zhang W and Welti R 2006 Signaling functions of phosphatidic acid. Prog. Lipid Res. 45 250–278CrossRefPubMedGoogle Scholar