Advertisement

Journal of Biosciences

, Volume 42, Issue 2, pp 333–344 | Cite as

Regulation of dynamin family proteins by post-translational modifications

  • Usha P Kar
  • Himani Dey
  • Abdur RahamanEmail author
Review

Abstract

Dynamin superfamily proteins comprising classical dynamins and related proteins are membrane remodelling agents involved in several biological processes such as endocytosis, maintenance of organelle morphology and viral resistance. These large GTPases couple GTP hydrolysis with membrane alterations such as fission, fusion or tubulation by undergoing repeated cycles of self-assembly/disassembly. The functions of these proteins are regulated by various post-translational modifications that affect their GTPase activity, multimerization or membrane association. Recently, several reports have demonstrated variety of such modifications providing a better understanding of the mechanisms by which dynamin proteins influence cellular responses to physiological and environmental cues. In this review, we discuss major post-translational modifications along with their roles in the mechanism of dynamin functions and implications in various cellular processes.

Keywords

Dynamin endocytosis GTPase mitochondrial dynamics post-translational modification 

Abbreviations used

CaMKIα

calmodulin-dependent protein kinase 1alpha

Cav1

Caveolin1

CDK

cyclin-dependent kinase

Drp

dynamin-related protein

eNOS

endothellial nitric oxide synthase

ER

endoplasmic reticulum

ERK

extracellular regulated kinase

GED

GTPase effector domain

GTP

guanosine triphosphate

HDAC

histone deacetylase

JNK

Janus kinase

MAM

mitochondria-associated ER membrane

MD

middle domain

Mfn

mitofusin

NO

nitric oxide

NOS

nitric oxide synthase

OMM

outer mitochondrial membrane

PHD

Pleckstrin homology domain

PKA

protein kinase A

PKC

protein kinase C

PRD

proline-rich domain

ROS

reactive oxygen species

SH3

Src homology 3

SIRT

sirtuin

Notes

Acknowledgements

The work in the laboratory is supported by DBT grant (BT/PR14643/BRB/10/862/2010).

References

  1. Ahn S, Kim J, Lucaveche CL, Reedy MC, Luttrell LM, Lefkowitz RJ and Daaka Y 2002 Src-dependent tyrosine phosphorylation regulates dynamin self-assembly and ligand-induced endocytosis of the epidermal growth factor receptor. J. Biol. Chem. 277 26642–26651.Google Scholar
  2. Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez M, Kellner U, et al. 2000 OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet. 26 211–215.Google Scholar
  3. Altmann K and Westermann B 2005 Role of essential genes in mitochondrial morphogenesis in Saccharomyces cerevisiae. Mol. Biol. Cell. 16 5410–5417.Google Scholar
  4. Anggono V, Smillie KJ, Graham ME, Valova VA, Cousin MA and Robinson PJ 2006 Syndapin I is the phosphorylation-regulated dynamin I partner in synaptic vesicle endocytosis. Nat. Neurosci. 9 752–760Google Scholar
  5. Anton F, Dittmar G, Langer T and Escobar-Henriques M 2013 Two deubiquitylases act on mitofusin and regulate mitochondrial fusion along independent pathways. Mol. Cell. 49 487–498Google Scholar
  6. Armbruster M, Messa M, Ferguson SM, De Camilli P and Ryan TA 2013 Dynamin phosphorylation controls optimization of endocytosis for brief action potential bursts. eLife. doi: 10.7554/eLife.00845
  7. Bashkirov PV, Akimov SA, Evseev AI, Schmid SL, Zimmerberg J and Frolov VA 2008 GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell. 135 1276–1286Google Scholar
  8. Bitoun M, Maugenre S, Jeannet P-Y, Lacène E, Ferrer X, Laforêt P, Martin J-J, Laporte J, et al. 2005 Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat. Genet. 37 1207–1209Google Scholar
  9. Bitoun M, Bevilacqua JA, Eymard B, Prudhon B, Fardeau M, Guicheney P and Romero NB 2009 A new centronuclear myopathy phenotype due to a novel dynamin 2 mutation. Neurology. 72 93–95CrossRefPubMedGoogle Scholar
  10. Bohren KM, Nadkarni V, Song JH, Gabbay KH and Owerbach D 2004 A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J. Biol. Chem. 279 27233–38Google Scholar
  11. Brantis-de-Carvalho CE, Maarifi G, Boldrin PEG, Zanelli CF, Nisole S, Chelbi-Alix MK and Valentini SR 2015 MxA interacts with and is modified by the SUMOylation machinery. Exp. Cell Res. 330 151–163Google Scholar
  12. Broillet MC 1999 S-nitrosylation of proteins. Cell. Mol. Life Sci. 55 1036–1042Google Scholar
  13. Cao S, Yao J, McCabe TJ, Yao Q, Katusic ZS, Sessa WC and Shah V 2001 Direct interaction between endothelial nitric-oxide synthase and dynamin-2. Implications for nitric-oxide synthase function. J. Biol. Chem. 276 14249–14256Google Scholar
  14. Carr JF and Hinshaw JE 1997 Dynamin assembles into spirals under physiological salt conditions upon the addition of GDP and ??-phosphate analogues. J. Biol. Chem. 272 28030–28035Google Scholar
  15. Cereghetti GM, Stangherlin A, de Brito OM, Chang CR, Blackstone C, Bernardi P and Scorrano L 2008 Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc. Natl. Acad. Sci. USA 105 15803–15808Google Scholar
  16. Chan DC 2006 Mitochondrial fusion and fission in mammals. Annu. Rev. Cell Dev. Biol. 22 79–99CrossRefPubMedGoogle Scholar
  17. Chang C-R and Blackstone C 2007 Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J. Biol. Chem. 282 21583–21587Google Scholar
  18. Chang CR and Blackstone C 2010 Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. in Annals of the New York Academy of Sciences 1201 34–39Google Scholar
  19. Chen H and Chan DC 2005 Emerging functions of mammalian mitochondrial fusion and fission. Hum. Mol. Genet. 14 R283–289Google Scholar
  20. Chen Y and Dorn GW 2013 PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science (New York, N.Y.) 340 471–475Google Scholar
  21. Chen MS, Obar RA, Schroeder CC, Austin TW, Poodry CA, Wadsworth SC and Vallee RB 1991 Multiple forms of dynamin are encoded by shibire, a drosophila gene involved in endocytosis. Nature 351 583–586Google Scholar
  22. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE and Chan DC 2003 Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and Are essential for embryonic development. J. Cell Biol. 160 189–200Google Scholar
  23. Cho D-HH, Nakamura T, Fang J, Cieplak P, Godzik A, Zezong G and Lipton SA 2009 S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324 102–105Google Scholar
  24. Cho B, Cho HM, Kim HJ, Jeong J, Park SK, Hwang EM, Park J-Y, Kim WR, et al. 2014 CDK5-dependent inhibitory phosphorylation of Drp1 during neuronal maturation. Exp. Mol. Med. 46, e105Google Scholar
  25. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV and Mann M 2009 Lysine acetylation targets protein complexes and Co-regulates major cellular functions. Science 325 834–840Google Scholar
  26. Choudhary C, Weinert BT, Nishida Y, Verdin E and Mann M 2014 The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol. 15 536–550Google Scholar
  27. Cocucci E, Gaudin R and Kirchhausen T 2014 Dynamin recruitment and membrane scission at the neck of a clathrin-coated pit. Mol. Biol. Cell. 25 3595–3609CrossRefPubMedPubMedCentralGoogle Scholar
  28. David C, McPherson PS, Mundigl O and de Camilli P 1996 A role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals. Proc. Natl. Acad. Sci. USA 27293 331–335Google Scholar
  29. Davies VJ, Hollins AJ, Piechota MJ, Yip W, Davies JR, White KE, Nicols PP, Boulton ME, et al. 2007 Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum. Mol. Genet. 16 1307–13018Google Scholar
  30. de Brito OM and Scorrano L 2008 Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456 605–610Google Scholar
  31. Durieux A-C, Prudhon B, Guicheney P and Bitoun M 2010 Dynamin 2 and human diseases. J. Mol. Med. 88 339–350Google Scholar
  32. Ekena K, Vater CA, Raymond CK and Stevens TH 1993 The VPS1 protein is a dynamin-like GTPase required for sorting proteins to the yeast vacuole. Ciba Found. Symp. 176 198–211Google Scholar
  33. Estela A-G, Del Carmen Lara Castillo M, Tambini MD, Guardia-Laguarta C, de Groof Ad J , Madra M, Ikenouchi J, Umeda M, et al. 2012 Upregulated function of mitochondria-associated {ER} membranes in Alzheimer disease. EMBO J. 31 4106–4123Google Scholar
  34. Eura Y, Ishihara N, Yokota S and Mihara K 2003 Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. 134 333–344Google Scholar
  35. Figueroa-Romero C, Iñiguez-Lluhí JA, Stadler J, Chang C-R, Arnoult D, Keller PJ, Hong Y, Blackstone C, and Feldman EL 2009 SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. FASEB J. 23 3917–3927Google Scholar
  36. Fish KN, Schmid SL and Damke H 2000 Evidence that dynamin-2 functions as a signal-transducing GTPase. J. Cell Biol. 150 145–154Google Scholar
  37. Fisk HA and Yaffe MP 1999 A role for ubiquitination in mitochondrial inheritance in Saccharomyces cerevisiae. J. Cell Biol. 145 1199–1208CrossRefPubMedPubMedCentralGoogle Scholar
  38. Fritz S, Weinbach N and Westermann B 2003 Mdm30 is an F-box protein required for maintenance of fusion-competent mitochondria in yeast. Mol. Biol. Cell 14 2303–2313Google Scholar
  39. Gad H, Ringstad N, Löw P, Kjaerulff O, Gustafsson J, Wenk M, Di Paolo G, Nemoto Y, et al. 2000 Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin. Neuron. 27 301–312.Google Scholar
  40. Gao S, von der Malsburg A, Paeschke S, Behlke J, Haller O, Kochs G and Daumke O, Alexander von der Malsburg, Susann Paeschke, Joachim Behlke, Otto Haller, Georg Kochs, and Oliver Daumke. 2010 Structural basis of oligomerization in the stalk region of dynamin-like MxA. Nature 465 502–506Google Scholar
  41. Gastaldelli M, Imelli N, Boucke K, Amstutz K, Meier O and Greber U F Greber 2008 Infectious adenovirus type 2 transport through early but not late endosomes. Traffic 9 2265–2278Google Scholar
  42. Gould N, Doulias PT, Tenopoulou M, Raju K and Ischiropoulos H 2013 Regulation of protein function and signaling by reversible cysteine s-nitrosylation. J. Biol. Chem. 288 26473–26479Google Scholar
  43. Guo C, Hildick KL, Luo J, Dearden L, Wilkinson KA, Henley JM, Anderson DB, Wilkinson KA and Henley JM 2013 SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia. EMBO J. 32 1514–1528. doi: 10.1038/emboj.2013.65
  44. Han X-JJ, Lu Y-FF, Li S-AA, Kaitsuka T, Sato Y, Tomizawa K, Nairn AC, Takei K, Matsui H and Matsushita M 2008 {CaM} kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J. Cell Biol. 182 573–585Google Scholar
  45. Hao G et al. 2006 SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures. Proc. Natl. Acad. Sci. USA 103 1012–1017Google Scholar
  46. Harder Z, Zunino R and McBride H 2004 Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr. Biol. 14 340–345CrossRefPubMedGoogle Scholar
  47. Haun F, Nakamura T, Shiu AD, Cho D-H, Tsunemi T, Holland EA, La Spada AR and Lipton SA 2013 S-nitrosylation of dynamin-related protein 1 mediates mutant huntingtin-induced mitochondrial fragmentation and neuronal injury in Huntington’s disease. Antioxid. Redox Signal 19 1173–1184Google Scholar
  48. Hedskog L, Pinho CM, Filadi R, Rönnbäck A, Hertwig L, Wiehager B, Larssen P, Gellhaar S, et al. 2013 Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer’s disease and related models. Proc. Natl. Acad. Sci. USA 110 7916–7921Google Scholar
  49. Hill E, Van Der Kaay J, Downes CP and Smythe E 2001 The role of dynamin and its binding partners in coated pit invagination and scission. J. Cell Biol. 152 309–323Google Scholar
  50. Hinshaw JE 2000 Dynamin and its role in membrane fission. Annu. Rev. Cell Dev. Biol. 16 483–519CrossRefPubMedPubMedCentralGoogle Scholar
  51. Humbert S, Dhavan R and Tsai L 2000 P39 activates Cdk5 in neurons, and is associated with the actin cytoskeleton. J. Cell Sci. 113 975–983PubMedGoogle Scholar
  52. Ishihara N, Eura Y and Mihara K 2004 Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J. Cell Sci. 117 6535–6546CrossRefPubMedGoogle Scholar
  53. Jahani-Asl A, Huang E, Irrcher I, Rashidian J, Ishihara N, Lagace DC, Slack RS and Park DS 2015 CDK5 phosphorylates DRP1 and drives mitochondrial defects in NMDA-induced neuronal death. Hum. Mol. Genet. 24 4573–4583Google Scholar
  54. Janzen C, Kochs G and Haller O 2000 A monomeric GTPase-negative MxA mutant with antiviral activity. J. Virol. 74 8202–8206CrossRefPubMedPubMedCentralGoogle Scholar
  55. Jing E, Emanuelli B, Hirschey MD, Boucher J, Lee KY, Lombard D, Verdin EM and Kahn CR 2011 Sirtuin-3 (Sirt3) Regulates Skeletal Muscle Metabolism and Insulin Signaling via Altered Mitochondrial Oxidation and Reactive Oxygen Species Production. Proc. Natl. Acad. Sci. USA 108 14608–14613Google Scholar
  56. Kang-Decker, Ningling, Sheng Cao, Suvro Chatterjee, Janet Yao, Laurence J Egan, David Semela, Debabrata Mukhopadhyay, andVijay Shah 2007 Nitric oxide promotes endothelial cell survival signaling through S-nitrosylation and activation of dynamin-2. J. Cell Sci. 120 492–501Google Scholar
  57. Karbowski M, Neutzner A and Youle RJ 2007 The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J. Cell Biol. 178 71–84CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kim Y and Chang S 2006 Ever-expanding network of dynamin-interacting proteins. Mol. Neurobiol. 34 129–136CrossRefPubMedGoogle Scholar
  59. Kim HJ, Nagano Y, Choi SJ, Park SY, Kim H, Yao TP and Lee JY 2015 HDAC6 maintains mitochondrial connectivity under hypoxic stress by suppressing MARCH5/MITOL dependent MFN2 degradation. Biochem. Biophys. Res. Commun. 464 1235–1240Google Scholar
  60. Knott AB and Bossy-Wetzel E 2008 Impairing the mitochondrial fission and fusion balance: a new mechanism of neurodegeneration. in Annals of the New York Academy of Sciences pp. 283–292Google Scholar
  61. Komander D and Rape M 2012 The ubiquitin code. Annu. Rev. Biochem. 81 203–229CrossRefPubMedGoogle Scholar
  62. Koshiba T, Detmer SA, Kaiser JT, Chen H, McCaffery JM and Chan DC 2004 Structural basis of mitochondrial tethering by mitofusin complexes. Science (New York, N.Y.) 305 858–862Google Scholar
  63. Kuravi K, Nagotu S, Krikken AM, Sjollema K, Deckers M, Erdmann R, Veenhuis M and van der Klei IJ 2006 Dynamin-related proteins Vps1p and Dnm1p control peroxisome abundance in Saccharomyces cerevisiae. J. Cell Sci. 119 3994–4001Google Scholar
  64. Leboucher GP, Tsai YC, Yang M, Shaw KC, Zhou M, Veenstra TM, Glickman MH and Weissman AM 2012 Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. Mol. Cell 47 547–557Google Scholar
  65. Lee JE, Westrate LM, Wu H, Page C and Voeltz G 2016 Multiple dynamin family members collaborate to drive mitochondrial division. Nature 540 139–143Google Scholar
  66. Liesa M, Palacín M and Zorzano A 2009 Mitochondrial dynamics in mammalian health and disease. Physiol. Rev. 89 799–845CrossRefPubMedGoogle Scholar
  67. Liu Y-W, Neumann S, Ramachandran R, Ferguson SM, Pucadyil TJ and Schmid SL 2011 Differential curvature sensing and generating activities of dynamin isoforms provide opportunities for tissue-specific regulation. Proc. Natl. Acad. Sci. USA 108 E234–E242Google Scholar
  68. Liu YW, Mattila JP and Schmid SL 2013 Dynamin-catalyzed membrane fission requires coordinated GTP hydrolysis. PLoS ONE. 8 Google Scholar
  69. Meier O and Greber UF 2003 Adenovirus endocytosis. J. Gene Med. 5 451–462CrossRefPubMedGoogle Scholar
  70. Montessuit S, Somasekharan SP, Terrones O,Lucken-Ardjomande S, Herzig S, Schwarzenbacher R, Manstein DJ, Bossy-Wetzel E, et al. 2010 Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell 142 889–901Google Scholar
  71. Nakamura N, Kimura Y, Tokuda M, Honda S and Hirose S 2006 MARCH-V} is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 7 1019–1022Google Scholar
  72. Nakamura T, Cieplak P, DH Cho, Godzik A and Lipton SA 2010 S-Nitrosylation of Drp1 links excessive mitochondrial fission to neuronal injury in neurodegeneration. Mitochondrion 10 573–578Google Scholar
  73. Nannapaneni S, Wang D, Jain S, Schroeder B, Highfill C, Reustle L, Pittsley D, Maysent A, et al. 2010 The yeast dynamin-like protein Vps1:vps1 mutations perturb the internalization and the motility of endocytic vesicles and endosomes via disorganization of the actin cytoskeleton. Eur. J. Cell Biol. 89 499–508Google Scholar
  74. Palmer CS, Osellame LD, Laine D, Koutsopoulos OS, Frazier AE and Ryan MT 2011 {MiD49} and {MiD51,} new components of the mitochondrial fission machinery. EMBO Rep. 12 565–573Google Scholar
  75. Park Y-Y and Cho H 2012 Mitofusin 1 is degraded at G2/M phase through ubiquitylation by MARCH5. Cell Div. 7 25Google Scholar
  76. Park Y-Y, Lee S, Karbowski M, Neutzner A, Youle RJ and Cho H 2010 Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J. Cell Sci. 123 619–626Google Scholar
  77. Park, Y-Y, OTK Nguyen, H Kang, and H Cho 2014 MARCH5-mediated quality control on acetylated Mfn1 facilitates mitochondrial homeostasis and cell survival. Cell Death Dis. 5 e1172Google Scholar
  78. Pichler A, Gast A, Seeler JS, Dejean A and Melchior F 2002 The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108 109–120Google Scholar
  79. Pitts KR, Yoon Y, Krueger EW and McNiven MA 1999 The dynamin-like protein DLP1 is essential for normal distribution and morphology of the endoplasmic reticulum and mitochondria in mammalian cells. Mol. Biol. Cell. 10 4403–4417Google Scholar
  80. Praefcke GJK and McMahon HT 2004 The dynamin superfamily: universal membrane tubulation and fission molecules? Nat. Rev. Mol. Cell. Biol. 5 133–147Google Scholar
  81. Pucadyil TJ and Schmid SL 2008 Real-time visualization of dynamin-catalyzed membrane fission and vesicle release. Cell 135 1263–1275CrossRefPubMedPubMedCentralGoogle Scholar
  82. Pyakurel A, Savoia C, Hess D and Scorrano L 2015 Extracellular regulated kinase phosphorylates mitofusin 1 to control mitochondrial morphology and apoptosis. Mol. Cell 58 244–254Google Scholar
  83. Qi X, Disatnik M-H, Shen N, Sobel RA, and Mochly-Rosen D 2011 Aberrant mitochondrial fission in neurons induced by protein kinase C{delta} under oxidative stress conditions in vivo. Mol. Biol. Cell 22 256–265Google Scholar
  84. Qualmann B and Kelly RB 2000 Syndapin isoforms participate in receptor-mediated endocytosis and actin organization. J. Cell Biol. 148 1047–1061Google Scholar
  85. Rahaman A, Elde NC and Turkewitz AP 2008 A dynamin-related protein required for nuclear remodeling in tetrahymena. Curr. Biol. 18 1227–1233Google Scholar
  86. Reid KSC, Lindley PF and Thornton JM 1985 Sulphur-aromatic interactions in proteins. FEBS Lett. 190 209–213Google Scholar
  87. Reubold TF et al. 2005 Crystal structure of the GTPase domain of rat dynamin 1. Proc. Natl. Acad. Sci. USA 102 13093–13098Google Scholar
  88. Robinson PJ, Sontag JM, Liu JP, Fykse, C Slaughter EM, McMahon H and Südhof TC 1993 Dynamin GTPase regulated by protein kinase C phosphorylation in nerve terminals. Nature 365 163–166Google Scholar
  89. Samant SA, Zhang HJ, Hong Z, Pillai VB, Sundaresan NR, Wolfgeher D, Archer SL, Chan DC and Gupta MP 2014 SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol. Cell. Biol. 34 807–819Google Scholar
  90. Sever S, Damke H and Schmid SL 2000 Dynamin: GTP controls the formation of constricted coated pits, the rate limiting step in clathrin-mediated endocytosis. J. Cell Biol. 150 1137–1147Google Scholar
  91. Shajahan AN, Timblin BK, Sandoval R, Tiruppathi C, Malik AB and Minshall RD 2004 Role of Src-induced dynamin-2 phosphorylation in caveolae-mediated endocytosis in endothelial cells. J. Biol. Chem. 279 20392–20400Google Scholar
  92. Shpetner HS and Vallee RB 1989 Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59 421–432Google Scholar
  93. Smaczynska-de Rooij II, Marklew CJ, Allwood EG, Palmer SE, Booth WI, Mishra R, Goldberg MW and Ayscough KR 2015 Phosphorylation regulates the endocytic function of the yeast dynamin-related protein Vps1. Mol. Cell Biol. 36 742–755Google Scholar
  94. Song BD, Leonard M and Schmid SL 2004 Dynamin GTPase domain mutants that differentially affect GTP binding, GTP hydrolysis, and clathrin-mediated endocytosis. J. Biol. Chem. 279 40431–40436Google Scholar
  95. Strack S, Wilson TJ and Cribbs JT 2013 Cyclin-dependent kinases regulate splice-specific targeting of dynamin-related protein 1 to microtubules. J. Cell Biol. 201 1037–1051CrossRefPubMedPubMedCentralGoogle Scholar
  96. Su HL and Li SSL 2002 Molecular features of human ubiquitin-like SUMO genes and their encoded proteins. Gene. 296 65–73CrossRefPubMedGoogle Scholar
  97. Su SC and Tsai L-H 2011 Cyclin-dependent kinases in brain development and disease. Annu. Rev. Cell Dev. Biol. 27 465–491CrossRefPubMedGoogle Scholar
  98. Sugiura A, Nagashima S, Tokuyama T, Amo T, Matsuki M, Ishido S, Kudo Y, McBride HM, et al. 2013 MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2. Mol. Cell 51 20–34Google Scholar
  99. Taguchi N, Ishihara N, Jofuku A, Oka T, and Mihara K 2007 Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282 11521–11529Google Scholar
  100. Takei,K, Slepnev VI, Haucke V and De Camilli P 1999 Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat. Cell Biol. 1 33–39Google Scholar
  101. Tan TC, Valova VA, Malladi CS, Graham ME, Berven LA, Jupp OJ, Hansra G, McClure SJ, et al. 2003 Cdk5 is essential for synaptic vesicle endocytosis. Nat. Cell Biol. 5 701–710Google Scholar
  102. Tang J, Hu Z, Tan J, Yang S and Zeng L 2016 Parkin protects against oxygen-glucose deprivation/reperfusion insult by promoting Drp1 degradation. Oxid. Med. Cell Longev. 2016 8474303Google Scholar
  103. Tsai LH, Delalle I, Caviness VS, Chae T, and Harlow E 1994 P35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371 419–423Google Scholar
  104. Van der Bliek AM and Meyerowitz EM 1991 Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351 411–414Google Scholar
  105. Vater CA, Raymond CK, Ekena K, Howald-Stevenson I and Stevens TH 1992 The VPS1 protein, a homolog of dynamin required for vacuolar protein sorting in Saccharomyces cerevisiae, is a GTPase with two functionally separable domains. J. Cell Biol. 119 773–786Google Scholar
  106. Wada J and Nakatsuka A 2016 Mitochondrial dynamics and mitochondrial dysfunction in diabetes. Acta Med. Okayama. 70 151–158Google Scholar
  107. Wang Yonggang DM 2009 SUMOylation and deSUMOylation at a glance. J. Cell Sci. 122 4249–4252Google Scholar
  108. Wang K, Huang S, Kapoor-Munshi A and Nemerow G 1998 Adenovirus internalization and infection require dynamin. J. Virol. 72 3455–3458Google Scholar
  109. Wang G, Moniri NH, Ozawa K, Stamler JS and Daaka Y 2006 Nitric oxide regulates endocytosis by S-nitrosylation of dynamin. Proc. Natl. Acad. Sci. USA 103 1295–1300Google Scholar
  110. Wang Z, Kim JII, Frilot N and Daaka Y 2012 Dynamin2 S-nitrosylation regulates adenovirus type 5 infection of epithelial cells. J. Gen. Virol. 93 2109–2117Google Scholar
  111. Wasiak S, Zunino R and McBride HM 2007 Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J. Cell Biol. 177 439–450CrossRefPubMedPubMedCentralGoogle Scholar
  112. Wilsbach K and Payne GS 1993 Vps1p, a member of the dynamin GTPase family, is necessary for Golgi membrane protein retention in Saccharomyces cerevisiae. EMBO J. 12 3049–3059PubMedPubMedCentralGoogle Scholar
  113. Xu S, Cherok E, Das E, Li S, Roelofs BA, SX, Polster BM, Boyman L et al. 2015 Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein. Mol. Biol. Cell 27 349–359Google Scholar
  114. Yonashiro R, Ishido S, Kyo S, Fukuda T, Goto E, Matsuki Y, Ohmura-Hoshino M, Sada K, et al. 2006 A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 25 3618–3626Google Scholar
  115. Youle RJ and van der Bliek AM 2012 Mitochondrial fission, fusion, and stress. Science 337 1062–1065CrossRefPubMedPubMedCentralGoogle Scholar
  116. Yu T, Jhun BSS and Yoon Y 2010 High glucose stimulation increases reactive oxygen species production through the calcium and MAP kinase-mediated activation of mitochondrial fission. Antioxid Redox Signal. 14 425–437Google Scholar
  117. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L et al. 2010 Regulation of cellular metabolism by protein lysine acetylation. Science (New York, N.Y.) 327 1000–1004Google Scholar
  118. Züchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, Zappia M, Nelis E et al. 2004 Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 36 449–451Google Scholar
  119. Verhoeven K, Claeys K, De Jonghe P, Merory J, Oliveira SA et al. 2005 Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot-Marie-Tooth disease. Nat. Genet. 37 289–294Google Scholar
  120. Zunino R, Schauss A, Rippstein P, Miguel A-N and McBride HD 2007 The {SUMO} protease {SENP5} is required to maintain mitochondrial morphology and function. J. Cell Sci. 120 1178–1188Google Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  1. 1.School of Biological SciencesNational Institute of Science Education and Research-Bhubaneswar, HBNIOdishaIndia

Personalised recommendations