Journal of Biosciences

, Volume 42, Issue 1, pp 155–159 | Cite as

Diverse roles of WDR5-RbBP5-ASH2L-DPY30 (WRAD) complex in the functions of the SET1 histone methyltransferase family

Mini-Review

Abstract

WD repeat containing protein 5 (WDR5), Retinoblastoma Binding Protein 5 (RbBP5), Absent-Small-Homeotic-2-Like protein (ASH2L), and Dumpy-30 (Dpy30) have been reported to be the integral and shared components of all the SET1 family of histone 3 lysine 4 histone methyltransferase (HMT) complexes. Collectively called the WRAD complex, these proteins are pivotal to the HMT activity of the SET1 complexes. Recent reports highlight the novel non-canonical functions of WRAD in cellular processes other than its well-studied role in histone methylation and gene expression. In this review, we examine the diversity in emerging transcription-independent functions of WRAD.

Keywords

Cell cycle regulation SET1 family transcription WRAD 

Notes

Acknowledgements

We thank members of the Laboratory of Cell Cycle Regulation for valuable feedback. AA is the recipient of Junior and Senior Research Fellowships of the Council of Scientific and Industrial Research (CSIR), India, towards the pursuit of a Ph.D. degree of Manipal University. This work was supported in part by a grant from DBT (to ST; BT/BR15453/BRB/10/927/2011), DST (to ST; SB/SO/BB-069/2013) and CDFD core funds.

References

  1. Ali A, Veeranki SN and Tyagi S 2014 A SET-domain-independent role of WRAD complex in cell-cycle regulatory function of mixed lineage leukemia. Nucleic Acids Res. 42 7611–7624Google Scholar
  2. Ansari KI and Mandal SS 2010 Mixed lineage leukemia: roles in gene expression, hormone signaling and mRNA processing. FEBS J. 277 1790–1804CrossRefPubMedGoogle Scholar
  3. Bailey JK, Fields AT, Cheng K, Lee A, Wagenaar E, Lagrois R, Schmidt B, Xia B, et al. 2015 WD repeat-containing protein 5 (WDR5) localizes to the midbody and regulates abscission. J. Biol. Chem. 290 8987–9001CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bannister AJ and Kouzarides T 2011 Regulation of chromatin by histone modifications. Cell Res. 21 381–395CrossRefPubMedPubMedCentralGoogle Scholar
  5. Briggs SD, Bryk M, Strahl BD, Cheung WL, Davie JK, Dent SYR, Winston F and David Allis C 2001 Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev. 15 3286–3295CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cao F 2012 MLL/SET1 complex: from yeast to human. Fungal Genomics Biol. 2 1–2CrossRefGoogle Scholar
  7. Cho YW, Hong T, Hong SH, Guo H, Yu H, Kim D, Guszczynski T, Dressler GR, et al. 2007 PTIP associates with MLL3- and MLL4-containing histone H3 lysine 4 methyltransferase complex. J. Biol. Chem. 282 20395–20406CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cosgrove MS and Patel A 2010 Mixed lineage leukemia: a structure-function perspective of the MLL1 protein. FEBS J. 277 1832–1842CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dharmarajan V, Lee JH, Patel A, Skalnik DG and Cosgrove MS 2012 Structural basis for WDR5 interaction (Win) motif recognition in human SET1 family histone methyltransferases. J. Biol. Chem. 287 27275–27289CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dou Y, Milne TA, Ruthenburg AJ, Lee S, Lee JW, Verdine GL, Allis CD and Roeder RG 2006 Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat. Struct. Mol. Biol. 13 713–719CrossRefPubMedGoogle Scholar
  11. Eissenberg JC and Shilatifard A 2010 Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev. Biol. 339 240–249CrossRefPubMedGoogle Scholar
  12. Ernst P and Vakoc CR 2012 WRAD: enabler of the SET1-family of H3K4 methyltransferases. Brief. Funct. Genomics. 11 217–226CrossRefPubMedPubMedCentralGoogle Scholar
  13. Herz HM, Mohan M, Garruss AS, Liang K, Takahashi Y-h, Mickey K, Voets O, Verrijzer CP, et al. 2012 Enhancer-associated H3K4 monomethylation by trithorax-related, the drosophila homolog of mammalian MLL3/MLL4. Genes Dev. 26 2604–2620CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hu D, Gao X, Morgan MA, Herz H-M, Smith ER and Shilatifard A 2013 The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol. Cell. Biol. 33 4745–4754CrossRefPubMedPubMedCentralGoogle Scholar
  15. Li Y, Han J, Zhang Y, Cao F, Liu Z, Li S, Wu J, Hu C, et al. 2016 Structural basis for activity regulation of MLL family methyltransferases. Nature 530 447–452CrossRefPubMedPubMedCentralGoogle Scholar
  16. Martin C and Zhang Y 2005 The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol. 6 838–849CrossRefPubMedGoogle Scholar
  17. Nagy PL, Griesenbeck J, Kornberg RD and Cleary ML 2002 A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3. Proc. Natl. Acad. Sci. USA 99 90–94CrossRefPubMedGoogle Scholar
  18. Odho Z, Southall SM and Wilson JR 2010 Characterization of a novel WDR5-binding site that recruits RbBP5 through a conserved motif to enhance methylation of histone H3 lysine 4 by mixed lineage leukemia protein-1. J. Biol. Chem. 285 32967–32976CrossRefPubMedPubMedCentralGoogle Scholar
  19. Patel SR, Kim D, Levitan I and Dressler GR 2007 The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev. Cell 13 580–592CrossRefPubMedPubMedCentralGoogle Scholar
  20. Patel A, Dharmarajan V and Cosgrove MS 2008a Structure of WDR5 bound to mixed lineage leukemia protein-1 peptide. J. Biol. Chem. 283 32158–32161CrossRefPubMedGoogle Scholar
  21. Patel A, Vought VE, Dharmarajan V and Cosgrove MS 2008b A conserved arginine-containing motif crucial for the assembly and enzymatic activity of the mixed lineage leukemia protein-1 core complex. J. Biol. Chem. 283 32162–32175CrossRefPubMedGoogle Scholar
  22. Patel A, Dharmarajan V, Vought VE and Cosgrove MS 2009 On the mechanism of multiple lysine methylation by the human mixed lineage leukemia protein-1 (MLL1) core complex. J. Biol. Chem. 284 24242–24256CrossRefPubMedPubMedCentralGoogle Scholar
  23. Patel A, Vought VE, Dharmarajan V and Cosgrove MS 2011 A novel non-SET domain multi-subunit methyltransferase required for sequential nucleosomal histone H3 methylation by the mixed lineage leukemia protein-1 (MLL1) core complex. J. Biol. Chem. 286 3359–3369CrossRefPubMedGoogle Scholar
  24. Patel A, Vought VE, Swatkoski S, Viggiano S, Howard B, Dharmarajan V, Monteith KE, Kupakuwana G, et al. 2014 Automethylation activities within the mixed lineage leukemia-1 (MLL1) core complex reveal evidence supporting a “two-active site” model for multiple histone H3 lysine 4 methylation. J. Biol. Chem. 289 868–884CrossRefPubMedGoogle Scholar
  25. Piunti A and Shilatifard A 2016 Epigenetic balance of gene expression by Polycomb and COMPASS families. Science 352 aad9780CrossRefPubMedGoogle Scholar
  26. Senisterra G, Wu H, Allali-Hassani A, Wasney GA, Barsyte-Lovejoy D, Dombrovski L, Dong A, Nguyen KT, et al. 2013 Small-molecule inhibition of MLL activity by disruption of its interaction with WDR5. Biochem. J. 449 151–159CrossRefPubMedGoogle Scholar
  27. Shilatifard A 2012 The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu. Rev. Biochem. 81 65–95CrossRefPubMedPubMedCentralGoogle Scholar
  28. Shinsky SA and Cosgrove MS 2015 Unique role of the WD-40 repeat protein 5 (WDR5) subunit within the mixed lineage leukemia 3 (MLL3) histone methyltransferase complex. J. Biol. Chem. 290 25819–25833CrossRefPubMedPubMedCentralGoogle Scholar
  29. Shinsky SA, Hu M, Vought VE, Ng SB, Bamshad MJ, Shendure J and Cosgrove MS 2014 A non-active-site SET domain surface crucial for the interaction of MLL1 and the RbBP5/Ash2L heterodimer within MLL family core complexes. J. Mol. Biol. 426 2283–2299CrossRefPubMedPubMedCentralGoogle Scholar
  30. Smith E, Lin C and Shilatifard A 2011 The super elongation complex (SEC) and MLL in development and disease. Genes Dev. 25 661–672CrossRefPubMedPubMedCentralGoogle Scholar
  31. Song JJ and Kingston RE 2008 WDR5 interacts with mixed lineage leukemia (MLL) protein via the histone H3-binding pocket. J. Biol. Chem. 283 35258–35264CrossRefPubMedPubMedCentralGoogle Scholar
  32. Steward MM, Lee J, O’Donovan A, Wyatt M, Bernstein BE, Shilatifard A, Donovan AO, Wyatt M, et al. 2006 Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes. Nat. Struct. Mol. Biol. 13 852–854CrossRefPubMedGoogle Scholar
  33. Takahashi Y-h, Westfield GH, Oleskie AN, Trievel RC, Shilatifard A and Skiniotis G 2011 Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human. Proc. Natl. Acad. Sci. 108 20526–20531CrossRefPubMedPubMedCentralGoogle Scholar
  34. van Nuland R, Smits AH, Pallaki P, Jansen PWTC, Vermeulen M and Timmers HTM 2013 Quantitative dissection and stoichiometry determination of the human SET1/MLL histone methyltransferase complexes. Mol. Cell. Biol. 33 2067–2077CrossRefPubMedPubMedCentralGoogle Scholar
  35. Wu M, Wang PF, Lee JS, Martin-Brown S, Florens L, Washburn M and Shilatifard A 2008 Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Mol. Cell. Biol. 28 7337–7344CrossRefPubMedPubMedCentralGoogle Scholar
  36. Xu Z, Gong Q, Xia B, Groves B, Zimmermann M, Mugler C, Mu D, Matsumoto B, et al. 2009 A role of histone H3 lysine 4 methyltransferase components in endosomal trafficking. J. Cell Biol. 186 343–353CrossRefPubMedPubMedCentralGoogle Scholar
  37. Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I, Herr W and Cleary ML 2004 Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol. Cell. Biol. 24 5639–5649CrossRefPubMedPubMedCentralGoogle Scholar
  38. Zhang Y, Mittal A, Reid J, Reich S, Gamblin SJ and Wilson JR 2015 Evolving catalytic properties of the MLL family SET domain. Structure 23 1921–1933CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  1. 1.Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and DiagnosticsHyderabadIndia
  2. 2.Graduate StudiesManipal UniversityManipalIndia

Personalised recommendations