Skip to main content

Advertisement

Log in

Immune modulation by dendritic-cell-based cancer vaccines

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The interplay between host immunity and tumour cells has opened the possibility of targeting tumour cells by modulation of the human immune system. Cancer immunotherapy involves the treatment of a tumour by utilizing the recombinant human immune system components to target the pro-tumour microenvironment or by revitalizing the immune system with the ability to kill tumour cells by priming the immune cells with tumour antigens. In this review, current immunotherapy approaches to cancer with special focus on dendritic cell (DC)-based cancer vaccines are discussed. Some of the DC-based vaccines under clinical trials for various cancer types are highlighted. Establishing tumour immunity involves a plethora of immune components and pathways; hence, combining chemotherapy, radiation therapy and various arms of immunotherapy, after analysing the benefits of individual therapeutic agents, might be beneficial to the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Amin A, Dudek AZ, Logan TF, Lance RS, Holzbeierlein JM, Knox JJ, et al. 2015 Survival with AGS-003, an autologous dendritic cell-based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): phase 2 study results. J. Immunother. Cancer 3 14

  • Apetoh L, Vegran F, Ladoire S and Ghiringhelli F 2011 Restoration of antitumor immunity through selective inhibition of myeloid derived suppressor cells by anticancer therapies. Curr. Mol. Med. 11 365–372

    Article  CAS  PubMed  Google Scholar 

  • Appel S, Rupf A, Weck MM, Schoor O, Brummendorf TH, Weinschenk T, et al. 2005 Effects of imatinib on monocyte-derived dendritic cells are mediated by inhibition of nuclear factor-kappaB and Akt signaling pathways. Clin. Cancer Res. 11 1928–1940

    Article  CAS  PubMed  Google Scholar 

  • Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA, Bachmann MF, et al. 2009 mTOR regulates memory CD8 T-cell differentiation. Nature 460 108–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araki K, Ellebedy AH and Ahmed R 2011 TOR in the immune system. Curr. Opin. Cell Biol. 23 707–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attia P, Phan GQ, Maker AV, Robinson MR, Quezado MM, Yang JC, et al. 2005 Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J. Clin. Oncol. 23 6043–6053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakacs T, Mehrishi JN, Szabo M and Moss RW 2012 Interesting possibilities to improve the safety and efficacy of ipilimumab (Yervoy). Pharmacol. Res. 66 192–197

    Article  CAS  PubMed  Google Scholar 

  • Banchereau J and Steinman RM 1998 Dendritic cells and the control of immunity. Nature 392 245–252

    Article  CAS  PubMed  Google Scholar 

  • Bapsy PP, Sharan B, Kumar C, Das RP, Rangarajan B, Jain M, et al. 2014 Open-label, multi-center, non-randomized, single-arm study to evaluate the safety and efficacy of dendritic cell immunotherapy in patients with refractory solid malignancies, on supportive care. Cytotherapy 16 234–244

    Article  CAS  PubMed  Google Scholar 

  • Barfoed AM, Petersen TR, Kirkin AF, Thor Straten P, Claesson MH and Zeuthen J 2000 Cytotoxic T-lymphocyte clones, established by stimulation with the HLA-A2 binding p5365-73 wild type peptide loaded on dendritic cells In vitro, specifically recognize and lyse HLA-A2 tumour cells overexpressing the p53 protein. Scand. J. Immunol. 51 128–133

    Article  CAS  PubMed  Google Scholar 

  • Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, et al. 1999 Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285 727–729

    Article  CAS  PubMed  Google Scholar 

  • Bertho N, Adamski H, Toujas L, Debove M, Davoust J and Quillien V 2005 Efficient migration of dendritic cells toward lymph node chemokines and induction of T(H)1 responses require maturation stimulus and apoptotic cell interaction. Blood 106 1734–1741

    Article  CAS  PubMed  Google Scholar 

  • Boll B, Eltaib F, Reiners KS, von Tresckow B, Tawadros S, Simhadri VR, et al. 2009 Heat shock protein 90 inhibitor BIIB021 (CNF2024) depletes NF-kappaB and sensitizes Hodgkin's lymphoma cells for natural killer cell-mediated cytotoxicity. Clin. Cancer Res. 15 5108–5116

    Article  PubMed  CAS  Google Scholar 

  • Boni A, Cogdill AP, Dang P, Udayakumar D, Njauw CN, Sloss CM, et al. 2010 Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res. 70 5213–5219

    Article  CAS  PubMed  Google Scholar 

  • Bonini C and Mondino A 2015 Adoptive T-cell therapy for cancer: the era of engineered T cells. Eur. J. Immunol. 45 2457–2469

    Article  CAS  PubMed  Google Scholar 

  • Brudno JN, Somerville RP, Shi V, Rose JJ, Halverson DC, Fowler DH, et al. 2016 Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J. Clin. Oncol. 34 1112–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cella M, Sallusto F and Lanzavecchia A 1997 Origin, maturation and antigen presenting function of dendritic cells. Curr. Opin. Immunol. 9 10–16

    Article  CAS  PubMed  Google Scholar 

  • Cella M, Salio M, Sakakibara Y, Langen H, Julkunen I and Lanzavecchia A 1999 Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J. Exp. Med. 189 821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciceri F, Bonini C, Stanghellini MT, Bondanza A, Traversari C, Salomoni M, et al. 2009 Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol. 10 489–500

    Article  PubMed  Google Scholar 

  • Correale P, Botta C, Cusi MG, Del Vecchio MT, De Santi MM, Gori Savellini G, et al. 2012 Cetuximab +/- chemotherapy enhances dendritic cell-mediated phagocytosis of colon cancer cells and ignites a highly efficient colon cancer antigen-specific cytotoxic T-cell response in vitro. Int. J. Cancer 130 1577–1589

    Article  CAS  PubMed  Google Scholar 

  • Corthay A, Skovseth DK, Lundin KU, Rosjo E, Omholt H, Hofgaard PO, et al. 2005 Primary antitumor immune response mediated by CD4+ T cells. Immunity 22 371–383

    Article  CAS  PubMed  Google Scholar 

  • da Silva GB, Silva TG, Duarte RA, Neto NL, Carrara HH, Donadi EA, et al. 2013 Expression of the classical and nonclassical HLA molecules in breast cancer. Int. J. Breast Cancer 2013 250435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhodapkar MV, Sznol M, Zhao B, Wang D, Carvajal RD, Keohan ML, et al. 2014 Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci. Transl. Med. 6, 232–251

  • Dieu MC, Vanbervliet B, Vicari A, Bridon JM, Oldham E, Ait-Yahia S, et al. 1998 Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J. Exp. Med. 188 373–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dillman R, Selvan S, Schiltz P, Peterson C, Allen K, Depriest C, et al. 2004 Phase I/II trial of melanoma patient-specific vaccine of proliferating autologous tumor cells, dendritic cells, and GM-CSF: planned interim analysis. Cancer Biother. Radiopharm. 19 658–665

    Article  CAS  PubMed  Google Scholar 

  • Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, et al. 2002 Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298 850–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn GP, Old LJ and Schreiber RD 2004 The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21 137–148

    Article  CAS  PubMed  Google Scholar 

  • Engell-Noerregaard L, Kvistborg P, Zocca M-B, Pedersen AW, Claesson MH and Mellemgaard A 2013 Clinical and immunological effects in patients with advanced non-small cell lung-cancer after vaccination with dendritic cells exposed to an allogeneic tumor cell lysate. World J. Vaccines 3 9

    Article  CAS  Google Scholar 

  • Fauci JM, Straughn JM Jr, Ferrone S and Buchsbaum DJ 2012 A review of B7-H3 and B7-H4 immune molecules and their role in ovarian cancer. Gynecol. Oncol. 127 420–425

    Article  CAS  PubMed  Google Scholar 

  • Fay JW, Palucka AK, Paczesny S, Dhodapkar M, Johnston DA, Burkeholder S, et al. 2006 Long-term outcomes in patients with metastatic melanoma vaccinated with melanoma peptide-pulsed CD34(+) progenitor-derived dendritic cells. Cancer Immunol. Immunother. 55 1209–1218

  • Ferlazzo G and Munz C 2004 NK cell compartments and their activation by dendritic cells. J. Immunol. 172 1333–1339

    Article  CAS  PubMed  Google Scholar 

  • Ferlazzo G, Wesa A, Wei WZ and Galy A 1999 Dendritic cells generated either from CD34+ progenitor cells or from monocytes differ in their ability to activate antigen-specific CD8+ T cells. J. Immunol. 163 3597–3604

    CAS  PubMed  Google Scholar 

  • Fionda C, Soriani A, Malgarini G, Iannitto ML, Santoni A and Cippitelli M 2009 Heat shock protein-90 inhibitors increase MHC class I-related chain A and B ligand expression on multiple myeloma cells and their ability to trigger NK cell degranulation. J. Immunol. 183 4385–4394

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Yang W, Pan M, Scully E, Girardi M, Augenlicht LH, et al. 2003 Gamma delta T cells provide an early source of interferon gamma in tumor immunity. J. Exp. Med. 198 433–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, et al. 2011 A human memory T cell subset with stem cell-like properties. Nat. Med. 17 1290–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghiringhelli F and Apetoh L 2015 Enhancing the anticancer effects of 5-fluorouracil: current challenges and future perspectives. Biomed. J. 38 111–116

    Article  PubMed  Google Scholar 

  • Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R, et al. 2001 Regulation of cutaneous malignancy by gammadelta T cells. Science 294 605–609

    Article  CAS  PubMed  Google Scholar 

  • Girardi M, Glusac E, Filler RB, Roberts SJ, Propperova I, Lewis J, et al. 2003 The distinct contributions of murine T cell receptor (TCR)gammadelta+ and TCRalphabeta+ T cells to different stages of chemically induced skin cancer. J. Exp. Med. 198 747–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granucci F, Ferrero E, Foti M, Aggujaro D, Vettoretto K and Ricciardi-Castagnoli P 1999 Early events in dendritic cell maturation induced by LPS. Microbes Infect. 1 1079–1084

    Article  CAS  PubMed  Google Scholar 

  • Gray HJ, Benigno B, Berek J, Chang J, Mason J, Mileshkin L, et al. 2016 Progression-free and overall survival in ovarian cancer patients treated with CVac, a mucin 1 dendritic cell therapy in a randomized phase 2 trial. J. Immunother. Cancer 4 34

  • Groh V, Wu J, Yee C and Spies T 2002 Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419 734–738

    Article  CAS  PubMed  Google Scholar 

  • Gross L 1943 Intradermal immunization of C3H mice against a sarcoma that originated in an animal of the same line. Cancer Res. 3 326–333

    Google Scholar 

  • Guermonprez P, Valladeau J, Zitvogel L, Thery C and Amigorena S 2002 Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20 621–667

    Article  CAS  PubMed  Google Scholar 

  • Halpert MM, Konduri V, Liang D, Chen Y, Wing JB, Paust S, et al. 2016 Dendritic cell-secreted cytotoxic T-lymphocyte-associated protein-4 regulates the T-cell response by downmodulating bystander surface B7. Stem Cells Dev. 25 774–787

    Article  CAS  PubMed  Google Scholar 

  • Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, et al. 2001 Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194 769–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He T, Tang C, Xu S, Moyana T and Xiang J 2007 Interferon gamma stimulates cellular maturation of dendritic cell line DC2.4 leading to induction of efficient cytotoxic T cell responses and antitumor immunity. Cell Mol. Immunol. 4 105–111

  • Hirschowitz EA, Foody T, Kryscio R, Dickson L, Sturgill J and Yannelli J 2004 Autologous dendritic cell vaccines for non-small-cell lung cancer. J. Clin. Oncol. 22 2808–2815

    Article  PubMed  Google Scholar 

  • Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. 2010 Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363 711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwashita Y, Tahara K, Goto S, Sasaki A, Kai S, Seike M, et al. 2003 A phase I study of autologous dendritic cell-based immunotherapy for patients with unresectable primary liver cancer. Cancer Immunol. Immunother. 52 155–161

    CAS  PubMed  Google Scholar 

  • Jeanbart L and Swartz MA 2015 Engineering opportunities in cancer immunotherapy. Proc. Natl. Acad. Sci. USA 112 14467–14472

  • Kandalaft LE, Chiang CL, Tanyi J, Motz G, Balint K, Mick R, et al. 2013 A Phase I vaccine trial using dendritic cells pulsed with autologous oxidized lysate for recurrent ovarian cancer. J. Transl. Med. 11 149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khong HT and Restifo NP 2002 Natural selection of tumor variants in the generation of "tumor escape" phenotypes. Nat. Immunol. 3 999–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Kim HO, Kim HJ, Lee K and Kim HS 2008 Generation of functionally mature dendritic cells from elutriated monocytes using polyinosinic : polycytidylic acid and soluble CD40 ligand for clinical application. Clin. Exp. Immunol. 154 365–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M, Chiba A, Izawa H, Yanagida E, Okamoto M, Shimodaira S, et al. 2014 The feasibility and clinical effects of dendritic cell-based immunotherapy targeting synthesized peptides for recurrent ovarian cancer. J. Ovarian Res. 7 48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krempien R, Muenter M, Huber P, Nill S, Friess H, Timke C, et al. 2005 Randomized phase II – study evaluating EGFR targeting therapy with Cetuximab in combination with radiotherapy and chemotherapy for patients with locally advanced pancreatic cancer – PARC: study protocol [ISRCTN56652283]. BMC Cancer 5 1–11

    Article  CAS  Google Scholar 

  • Kreutz M, Tacken PJ and Figdor CG 2013 Targeting dendritic cells--why bother? Blood 121 2836–2844

    Article  CAS  PubMed  Google Scholar 

  • Larmonier N, Janikashvili N, LaCasse CJ, Larmonier CB, Cantrell J, Situ E, et al. 2008 Imatinib mesylate inhibits CD4+ CD25+ regulatory T cell activity and enhances active immunotherapy against BCR-ABL- tumors. J. Immunol. 181 6955–6963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le DT, Lutz E, Uram JN, Sugar EA, Onners B, Solt S, et al. 2013 Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J. Immunother. 36 382–389

  • Maraskovsky E, Daro E, Roux E, Teepe M, Maliszewski CR, Hoek J, et al. 2000 In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood 96 878–884

    CAS  PubMed  Google Scholar 

  • Marincola FM, Jaffee EM, Hicklin DJ and Ferrone S 2000 Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv. Immunol. 74 181–273

    Article  CAS  PubMed  Google Scholar 

  • Mayanagi S, Kitago M, Sakurai T, Matsuda T, Fujita T, Higuchi H, et al. 2015 Phase I pilot study of Wilms tumor gene 1 peptide-pulsed dendritic cell vaccination combined with gemcitabine in pancreatic cancer. Cancer Sci. 106 397–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellman I, Coukos G and Dranoff G 2011 Cancer immunotherapy comes of age. Nature 480 480–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell PL, Quinn MA, Grant PT, Allen DG, Jobling TW, White SC, et al. 2014 A phase 2, single-arm study of an autologous dendritic cell treatment against mucin 1 in patients with advanced epithelial ovarian cancer. J. Immunother. Cancer 2 16

  • Mocikat R, Braumuller H, Gumy A, Egeter O, Ziegler H, Reusch U, et al. 2003 Natural killer cells activated by MHC class I(low) targets prime dendritic cells to induce protective CD8 T cell responses. Immunity 19 561–569

    Article  CAS  PubMed  Google Scholar 

  • Mukherji B, Chakraborty NG, Yamasaki S, Okino T, Yamase H, Sporn JR, et al. 1995 Induction of antigen-specific cytolytic T cells in situ in human melanoma by immunization with synthetic peptide-pulsed autologous antigen presenting cells. Proc. Natl. Acad. Sci. USA 92 8078–8082

  • Mullins DW, Sheasley SL, Ream RM, Bullock TN, Fu YX and Engelhard VH 2003 Route of immunization with peptide-pulsed dendritic cells controls the distribution of memory and effector T cells in lymphoid tissues and determines the pattern of regional tumor control. J. Exp. Med. 198 1023–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neller MA, Lopez JA and Schmidt CW 2008 Antigens for cancer immunotherapy. Semin. Immunol. 20 286–295

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama T, Tachibana M, Horiguchi Y, Nakamura K, Ikeda Y, Takesako K, et al. 2001 Immunotherapy of bladder cancer using autologous dendritic cells pulsed with human lymphocyte antigen-A24-specific MAGE-3 peptide. Clin. Cancer Res. 7 23

    CAS  PubMed  Google Scholar 

  • Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan TE, et al. 2011 Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J. Clin. Oncol. 29 330–336

    Article  CAS  PubMed  Google Scholar 

  • O'Neill DW, Adams S and Bhardwaj N 2004 Manipulating dendritic cell biology for the active immunotherapy of cancer. Blood 104 2235–2246

    Article  PubMed  CAS  Google Scholar 

  • Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M, et al. 2009 The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res. 69 2514–2522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palucka K and Banchereau J 2012 Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer 12 265–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardoll DM 2012 The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12 252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennock ND, White JT, Cross EW, Cheney EE, Tamburini BA and Kedl RM 2013 T cell responses: naive to memory and everything in between. Adv. Physiol. Educ. 37 273–283

    Article  PubMed  PubMed Central  Google Scholar 

  • Pentcheva-Hoang T, Simpson TR, Montalvo-Ortiz W and Allison JP 2014 Cytotoxic T lymphocyte antigen-4 blockade enhances antitumor immunity by stimulating melanoma-specific T-cell motility. Cancer Immunol. Res. 2 970–980

    Article  CAS  PubMed  Google Scholar 

  • Podrazil M, Horvath R, Becht E, Rozkova D, Bilkova P, Sochorova K, et al. 2015 Phase I/II clinical trial of dendritic-cell based immunotherapy (DCVAC/PCa) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer. Oncotarget 6 18192–18205

    Article  PubMed  PubMed Central  Google Scholar 

  • Polyzoidis S and Ashkan K 2014 DCVax(R)-L--developed by Northwest Biotherapeutics. Hum. Vaccin. Immunother. 10 3139–3145

  • Prue RL, Vari F, Radford KJ, Tong H, Hardy MY, D’Rozario R, et al. 2015 A Phase I clinical trial of CD1c (BDCA-1)+ dendritic cells pulsed with HLA-A*0201 peptides for immunotherapy of metastatic hormone refractory prostate cancer. J. Immunother 38 71–76

  • Ribas A, Comin-Anduix B, Chmielowski B, Jalil J, de la Rocha P, McCannel TA, et al. 2009 Dendritic cell vaccination combined with CTLA4 blockade in patients with metastatic melanoma. Clin. Cancer Res. 15 6267–6276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridgway D 2003 The first 1000 dendritic cell vaccinees. Cancer Investig. 21 873–886

    Article  Google Scholar 

  • Rouas R, Lewalle P, El Ouriaghli F, Nowak B, Duvillier H and Martiat P 2004 Poly(I:C) used for human dendritic cell maturation preserves their ability to secondarily secrete bioactive IL-12. Int. Immunol. 16 767–773

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein N, Alvarez M, Zwirner NW, Toscano MA, Ilarregui JM, Bravo A, et al. 2004 Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; a potential mechanism of tumor-immune privilege. Cancer Cell 5 241–251

    Article  CAS  PubMed  Google Scholar 

  • Sallusto F, Palermo B, Lenig D, Miettinen M, Matikainen S, Julkunen I, et al. 1999 Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur. J. Immunol. 29 1617–1625

    Article  CAS  PubMed  Google Scholar 

  • Schuurhuis DH, Laban S, Toes RE, Ricciardi-Castagnoli P, Kleijmeer MJ, van der Voort EI, et al. 2000 Immature dendritic cells acquire CD8(+) cytotoxic T lymphocyte priming capacity upon activation by T helper cell-independent or -dependent stimuli. J. Exp. Med. 192 145–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P and Allison JP 2015 The future of immune checkpoint therapy. Science 348 56–61

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Koldovsky U, Xu S, Mick R, Roses R, Fitzpatrick E, et al. 2012 HER-2 pulsed dendritic cell vaccine can eliminate HER-2 expression and impact DCIS. Cancer 118 4354–4362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Evans JE and Rock KL 2003 Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425 516–521

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Tricot GJ, Garg TK, Malaviarachchi PA, Szmania SM, Kellum RE, et al. 2008 Bortezomib down-regulates the cell-surface expression of HLA class I and enhances natural killer cell-mediated lysis of myeloma. Blood 111 1309–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siena S, Di Nicola M, Mortarini R, Anichini A, Bregni M, Parmiani G, et al. 1997 Expansion of immunostimulatory dendritic cells from peripheral blood of patients with cancer. Oncologist 2 65–69

    CAS  PubMed  Google Scholar 

  • Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH, et al. 2006 Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J. Clin. Oncol. 24 3089–3094

    Article  CAS  PubMed  Google Scholar 

  • Smyth MJ, Takeda K, Hayakawa Y, Peschon JJ, van den Brink MR and Yagita H 2003 Nature's TRAIL--on a path to cancer immunotherapy. Immunity 18 1–6

    Article  CAS  PubMed  Google Scholar 

  • So-Rosillo R and Small EJ 2006 Sipuleucel-T (APC8015) for prostate cancer. Expert. Rev. Anticancer. Ther. 6 1163–1167

    Article  CAS  PubMed  Google Scholar 

  • Steinman RM and Banchereau J 2007 Taking dendritic cells into medicine. Nature 449 419–426

    Article  CAS  PubMed  Google Scholar 

  • Stevanovic S, Draper LM, Langhan MM, Campbell TE, Kwong ML, Wunderlich JR, et al. 2015 Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J. Clin. Oncol. 33 1543–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockwin LH, McGonagle D, Martin IG and Blair GE 2000 Dendritic cells: immunological sentinels with a central role in health and disease. Immunol. Cell Biol. 78 91–102

    Article  CAS  PubMed  Google Scholar 

  • Suzuki E, Kapoor V, Jassar AS, Kaiser LR and Albelda SM 2005 Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin. Cancer Res. 11 6713–6721

    Article  CAS  PubMed  Google Scholar 

  • Syme R and Gluck S 2001 Effects of cytokines on the culture and differentiation of dendritic cells in vitro. J. Hematother. Stem Cell Res. 10 43–51

    Article  CAS  PubMed  Google Scholar 

  • Taieb J, Maruyama K, Borg C, Terme M and Zitvogel L 2004 Imatinib mesylate impairs Flt3L-mediated dendritic cell expansion and antitumor effects in vivo. Blood 103 1966–1967

  • Terabe M and Berzofsky JA 2004 Immunoregulatory T cells in tumor immunity. Curr. Opin. Immunol. 16 157–162

    Article  CAS  PubMed  Google Scholar 

  • Toh HC, Wang WW, Chia WK, Kvistborg P, Sun L, Teo K, et al. 2009 Clinical benefit of allogeneic melanoma cell lysate-pulsed autologous dendritic cell vaccine in MAGE-positive colorectal cancer patients. Clin. Cancer Res. 15 7726–7736

    Article  CAS  PubMed  Google Scholar 

  • Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. 2012 Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366 2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Triozzi PL and Aldrich W 1997 Phenotypic and functional differences between human dendritic cells derived in vitro from hematopoietic progenitors and from monocytes/macrophages. J. Leukoc. Biol. 61 600–608

    CAS  PubMed  Google Scholar 

  • Tseng CW, Monie A, Wu CY, Huang B, Wang MC, Hung CF, et al. 2008 Treatment with proteasome inhibitor bortezomib enhances antigen-specific CD8+ T-cell-mediated antitumor immunity induced by DNA vaccination. J. Mol. Med. 86 899–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, et al. 2003 Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. 9 1269–1274

    Article  CAS  PubMed  Google Scholar 

  • van den Broek ME, Kagi D, Ossendorp F, Toes R, Vamvakas S, Lutz WK, et al. 1996 Decreased tumor surveillance in perforin-deficient mice. J. Exp. Med. 184 1781–1790

    Article  PubMed  Google Scholar 

  • Vanneman M and Dranoff G 2012 Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 12 237–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vigneron N 2015 Human tumor antigens and cancer immunotherapy. Biomed. Res. Int. 2015 948501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Voskens CJ, Goldinger SM, Loquai C, Robert C, Kaehler KC, Berking C, et al. 2013 The price of tumor control: an analysis of rare side effects of anti-CTLA-4 therapy in metastatic melanoma from the ipilimumab network. PLoS One 8 e53745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss GR, Grosh WW, Chianese-Bullock KA, Zhao Y, Liu H, Slingluff CL Jr, et al. 2011 Molecular insights on the peripheral and intratumoral effects of systemic high-dose rIL-2 (aldesleukin) administration for the treatment of metastatic melanoma. Clin. Cancer Res. 17 7440–7450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wykes M and MacPherson G 2000 Dendritic cell-B-cell interaction: dendritic cells provide B cells with CD40-independent proliferation signals and CD40-dependent survival signals. Immunology 100 1–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagihara S, Komura E, Nagafune J, Watarai H and Yamaguchi Y 1998 EBI1/CCR7 is a new member of dendritic cell chemokine receptor that is up-regulated upon maturation. J. Immunol. 161 3096–3102

    CAS  PubMed  Google Scholar 

  • Yewdell JW, Norbury CC and Bennink JR 1999 Mechanisms of exogenous antigen presentation by MHC class I molecules in vitro and in vivo: implications for generating CD8+ T cell responses to infectious agents, tumors, transplants, and vaccines. Adv. Immunol. 73 1–77

    Article  CAS  PubMed  Google Scholar 

  • Zitvogel L, Kepp O and Kroemer G 2011 Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat. Rev. Clin. Oncol. 8 151–160

    Article  CAS  PubMed  Google Scholar 

  • Zsiros E, Tsuji T and Odunsi K 2015 Adoptive T-cell therapy is a promising salvage approach for advanced or recurrent metastatic cervical cancer. J. Clin. Oncol. 33 1521–1522

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaitanya Kumar.

Additional information

[Kumar C, Kohli S, Bapsy PP, Vaid AK, Jain M, Attili VSS and Sharan B 2017 Immune modulation by dendritic-cell-based cancer vaccines. J. Biosci.]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, C., Kohli, S., Bapsy, P.P. et al. Immune modulation by dendritic-cell-based cancer vaccines. J Biosci 42, 161–173 (2017). https://doi.org/10.1007/s12038-017-9665-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-017-9665-x

Keywords

Navigation