Skip to main content
Log in

Heterochromatin and the molecular mechanisms of ‘parent-of-origin’ effects in animals

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Twenty five years ago it was proposed that conserved components of constitutive heterochromatin assemble heterochromatin-like complexes in euchromatin and this could provide a general mechanism for regulating heritable (cell-to-cell) changes in gene expressibility. As a special case, differences in the assembly of heterochromatin-like complexes on homologous chromosomes might also regulate the parent-of-origin-dependent gene expression observed in placental mammals. Here, the progress made in the intervening period with emphasis on the role of heterochromatin and heterochromatin-like complexes in parent-of-origin effects in animals is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

5hmC:

5-hydroxymethylcytosine

5mC:

5-methylcytosine

ADD:

ATRX-DNMT3-DNMT3L domain

ATRX:

Alpha Thalassemia/Mental Retardation Syndrome X-Linked

CAF-1:

chromatin assembly factor 1

CD:

chromodomain

CE:

controlling element

CF:

chromocenter formation

CGIs:

CpG islands

CSD:

chromo shadow domain

DamID:

DNA adenine methyltransferase identification

DAXX:

Death Domain associated protein

DNMT1:

maintenance DNA methyltransferase 1

DNMT3A:

de novo DNA methyltransferase 3A

DNMT3B:

de novo DNA methyltransferase 3B

DNMT3L:

DNA methyltransferase 3L

ES:

embryonic stem

G9a:

K9H3 HMTase

GLP:

G9a-like protein K9H3 HMTase

gDMRs:

germline differentially methylated regions

H3K9me2:

di-methylated lysine 9 on histone H3

H3K9me3:

tri-methylated lysine 9 on histone H3

H3S10P:

phosphorylation of serine 10 on histone H3

H4K20me3:

tri-methylated lysine 20 on histone H4

HMTases:

histone methyltransferases

HDACs:

histone deactylases

HR:

hinge region

HP1:

Heterochromatin Protein 1

ICR:

imprinting control region

IPS:

induced pluripotent stem cell

KAP1:

KRAB-associated protein 1

Kb:

kilobases

KRAB-ZNPs:

Krüppel-associated box (KRAB) domain zinc-finger proteins

KRAB-ZNF:

KRAB domain-zinc finger

LINE:

long interspersed elements

lncRNA:

long non-coding RNA

LTR:

long terminal repeat

Mb:

megabases

MEFs:

murine embryonic fibroblasts

MuERV-L:

murine endogenous retrovirus L

NOR:

nucleolar organizer region

Np95:

Nuclear protein 95

NuRD:

Nucleosome Remodelling histone Deacetylase

ORC:

origin of replication complex

PCHET2:

Plannococcus citri heterochromatin protein 2

PCNA:

proliferating cell nuclear antigen

PGCs:

primordial germ cells

PHD:

plant homeodomain

PEV:

position-effect variegation

pN:

pico-Newtons

PN:

pro-nuclear stage

PNBs:

peri-nucleolar bodies

PxVxL:

Proline/Any/Valine/Any/Leucine penta-peptide motif

RBCC:

Ring-finger B Box-Coiled Coil domain

reverse majSat:

reverse major satellite sequence

RNF12/RLIM:

Ring Finger protein LIM Domain interacting

RRR:

reprogramming resistant regions

SCNT:

somatic cell nuclear transfer

SETDB1:

SET Domain Bifurcated 1 K9H3 HMTase

siRNA:

small interfering RNA

SMARCAD1:

SWI/SNF-Related, Matrix-Associated Actin-Dependent Regulator of Chromatin, Subfamily A, Containing DEAD/H Box 1

SUMO2:

Small ubiquitin-related modifier 2

SUV39H1/2:

mammalian suvar K9H3 HMTase 1 and 2

Tet:

Ten-eleven translocation dioxygenase

UBE2i:

Ubiquitin conjugating enzyme 2i

Xp :

paternal X-chromosome

Xm :

maternal X chromosome

ZGA:

zygotic genome activation

Zscan4:

Zinc Finger and SCAN domain-containing 4.

References

  • Aagaard L, Laible G, Selenko P, Schmid M, Dorn R, Schotta G, et al. 1999 Functional mammalian homologues of the Drosophila PEV‐modifier Su (var) 3‐9 encode centromere‐associated proteins which complex with the heterochromatin component M31. EMBO J. 18 1923–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguirre-Lavin T, Adenot P, Bonnet-Garnier A, Lehmann G, Fleurot R, Boulesteix C, et al. 2012 3D-FISH analysis of embryonic nuclei in mouse highlights several abrupt changes of nuclear organization during preimplantation development. BMC Dev. Biol. 12 1

    Article  Google Scholar 

  • Alabert C and Groth A 2012 Chromatin replication and epigenome maintenance. Nat. Rev. Mol. Cell Biol. 13 153–167

    Article  CAS  PubMed  Google Scholar 

  • Almouzni G and Probst AV 2011 Heterochromatin maintenance and establishment: lessons from the mouse pericentromere. Nucleus 2 332–338

  • Alonso MBD, Zoidl G, Taveggia C, Bosse F, Zoidl C, Rahman M, et al. 2004 Identification and characterization of ZFP-57, a novel zinc finger transcription factor in the mammalian peripheral nervous system. J. Biol. Chem. 279 25653–25664

    Article  CAS  PubMed  Google Scholar 

  • Amouroux R, Nashun B, Shirane K, Nakagawa S, Hill PWS, D’Souza Z, et al. 2016 De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Nat. Cell Biol. 18 225–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annunziato AT 2012 Assembling chromatin: the long and winding road. Biochim. Biophys. Acta, Gene Regul. Mech. 1819 196–210

    Article  CAS  Google Scholar 

  • Anvar Z, Cammisa M, Riso V, Baglivo I, Kukreja H, Sparago A, et al. 2016 ZFP57 recognizes multiple and closely spaced sequence motif variants to maintain repressive epigenetic marks in mouse embryonic stem cells. Nucleic Acids Res. 44 1118–1132

    Article  CAS  PubMed  Google Scholar 

  • Arakawa T, Nakatani T, Oda M, Kimura Y, Sekita Y, Kimura T, et al. 2015 Stella controls chromocenter formation through regulation of Daxx expression in 2-cell embryos. Biochem. Biophys. Res. Commun. 466 60–65

    Article  CAS  PubMed  Google Scholar 

  • Auclair G, Borgel J, Sanz LA, Vallet J, Guibert S, Dumas M, et al. 2015 EHMT2 directs DNA methylation for efficient gene silencing in mouse embryos. Genome Res., doi:10.1101/gr.198291.115

  • Aucott R, Bullwinkel J, Yu Y, Shi W, Billur M, Brown JP, et al. 2008 HP1-β is required for development of the cerebral neocortex and neuromuscular junctions. J. Cell Biol. 183 597–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayyanathan K, Lechner MS, Bell P, Maul GG, Schultz DC, Yamada Y, et al. 2003 Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation. Genes Dev. 17 1855–1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachman KE, Rountree MR and Baylin SB 2001 Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin. J. Biol. Chem. 276 32282–32287

    Article  CAS  PubMed  Google Scholar 

  • Baker WK 1963 Genetic control of pigment differentiation in somatic cells. Am. Zool. 57–69

  • Baker WK 1968 Position-effect variegation. Adv. Genet. 14 133–169

    CAS  PubMed  Google Scholar 

  • Barlow DP and Bartolomei MS 2014 Genomic imprinting in mammals. Cold Spring Harb. Perspect. Biol. 6 a018382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bateson W 1909 Mendel's principles of heredity. (Cambridge University Press)

  • Baumann C, Schmidtmann A, Muegge K and De La Fuente R 2008 Association of ATRX with pericentric heterochromatin and the Y chromosome of neonatal mouse spermatogonia. BMC Mol. Biol. 9 1

    Article  CAS  Google Scholar 

  • Becker JS, Nicetto D and Zaret KS 2016 H3K9me3-dependent heterochromatin: barrier to cell fate changes. Trends Genet. 32 29–41

    Article  CAS  PubMed  Google Scholar 

  • Benetti R, García-Cao M and Blasco MA 2007 Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat. Genet. 39 243–250

    Article  CAS  PubMed  Google Scholar 

  • Bestor TH, Edwards JR and Boulard M 2015 Notes on the role of dynamic DNA methylation in mammalian development. Proc. Natl. Acad. Sci. 112 6796–6799

    Article  CAS  PubMed  Google Scholar 

  • Bierhoff H, Dammert MA, Brocks D, Dambacher S, Schotta G and Grummt I 2014 Quiescence-induced LncRNAs trigger H4K20 trimethylation and transcriptional silencing. Mol. Cell 54 675–682

  • Bilodeau S, Kagey MH, Frampton GM, Rahl PB and Young RA 2009 SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state. Genes Dev. 23 2484–2489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blasco MA 2007 The epigenetic regulation of mammalian telomeres. Nat. Rev. Genet. 8 299–309

    Article  CAS  PubMed  Google Scholar 

  • Bochman ML and Schwacha A 2009 The Mcm complex: unwinding the mechanism of a replicative helicase. Microbiol. Mol. Biol. Rev. 73 652–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bongiorni S, Cintio O and Prantera G 1999 The relationship between DNA methylation and chromosome imprinting in the coccid Planococcus citri. Genetics 151 1471–1478

  • Bongiorni S, Mazzuoli M, Masci S and Prantera G 2001 Facultative heterochromatization in parahaploid male mealybugs: involvement of a heterochromatin-associated protein. Development 128 3809–3817

  • Bongiorni S, Pasqualini B, Taranta M, Singh PB and Prantera G 2007 Epigenetic regulation of facultative heterochromatinisation in Planococcus citri via the Me (3) K9H3-HP1-Me (3) K20H4 pathway. J. Cell Sci. 120 1072–1080

    Article  CAS  PubMed  Google Scholar 

  • Bongiorni S, Pugnali M, Volpi S, Bizzaro D, Singh PB and Prantera G 2009 Epigenetic marks for chromosome imprinting during spermatogenesis in coccids. Chromosoma. 118 501–512

    Article  PubMed  Google Scholar 

  • Booth W, Smith CF, Eskridge PH, Hoss SK, Mendelson JR 3rd and Schuett GW 2012 Facultative parthenogenesis discovered in wild vertebrates. Biol Lett. 23 983–995

  • Borkent M, Bennett BD, Lackford B, Bar-Nur O, Brumbaugh J, Wang L, et al. 2016 A Serial shRNA Screen for Roadblocks to Reprogramming Identifies the Protein Modifier SUMO2. Stem Cell Rep. 6 704–716

    Article  CAS  Google Scholar 

  • Brown SW 1966 Heterochromatin. Science. 151 417–425

    Article  CAS  PubMed  Google Scholar 

  • Brown SW and Nur U 1964 Heterochromatic chromsomes in the coccids. Science 145 3809–3817

  • Brown JP, Bullwinkel J, Baron-Lühr B, Billur M, Schneider P, Winking H and Singh PB 2010 HP1γ function is required for male germ cell survival and spermatogenesis. Epigenetics Chromatin 3 1

  • Buglia G, Predazzi V and Ferrar M 1999 Cytosine methylation is not involved in the heterochromatization of the paternal genome of mealybug Planococcus citri. Chromosom. Res. 7 71–73

    Article  CAS  Google Scholar 

  • Burton A and Torres-Padilla M-E 2010 Epigenetic reprogramming and development: a unique heterochromatin organization in the preimplantation mouse embryo. Brief. Funct. Genomics 9 444–454

  • Cammas F, Oulad-Abdelghani M, Vonesch J-L, Huss-Garcia Y, Chambon P and Losson R 2002 Cell differentiation induces TIF1β association with centromeric heterochromatin via an HP1 interaction. J. Cell Sci. 115 3439–3448

    CAS  PubMed  Google Scholar 

  • Cammas F, Janoshazi A, Lerouge T and Losson R 2007 Dynamic and selective interactions of the transcriptional corepressor TIF1 beta with the heterochromatin protein HP1 isotypes during cell differentiation. Differentiation 75 627–637

  • Casanova M, Pasternak M, El Marjou F, Le Baccon P, Probst AV and Almouzni G 2013 Heterochromatin reorganization during early mouse development requires a single-stranded noncoding transcript. Cell Rep. 4 1156–1167

    Article  CAS  PubMed  Google Scholar 

  • Cattanach B and Kirk M 1985 Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315 496–498

  • Chadwick LH, Chadwick BP, Jaye DL and Wade PA 2009 The Mi-2/NuRD complex associates with pericentromeric heterochromatin during S phase in rapidly proliferating lymphoid cells. Chromosoma 118 445–457

  • Chakrabarti R, Sanyal S, Ghosh A, Bhar K, Das C and Siddhanta A 2015 Phosphatidylinositol-4-phosphate 5-Kinase 1α Modulates Ribosomal RNA Gene Silencing through Its Interaction with Histone H3 Lysine 9 Trimethylation and Heterochromatin Protein HP1-α. J. Biol. Chem. 290 20893–20903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers EV, Bickmore WA and Semple CA 2013 Divergence of mammalian higher order chromatin structure is associated with developmental loci. PLoS Comput. Biol. 9 e1003017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra HS and Brown SW 1975 Chromosome imprinting and the mammalian X chromosome. Nature. 253 165–168

    Article  CAS  PubMed  Google Scholar 

  • Cheloufi S, Elling U, Hopfgartner B, Jung YL, Murn J, Ninova M, et al. 2015 The histone chaperone CAF-1 safeguards somatic cell identity. Nature 528 218–224

  • Chen J, Liu H, Liu J, Qi J, Wei B, Yang J, et al. 2013 H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat. Genet. 45 34–42

    Article  CAS  PubMed  Google Scholar 

  • Cheutin T, McNairn AJ, Jenuwein T, Gilbert DM, Singh PB and Misteli T 2003 Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 299 721–725

  • Cho S, Park JS, Kwon S and Kang Y-K 2012 Dynamics of Setdb1 expression in early mouse development. Gene Expr. Patterns 12 213–218

  • Choo KHA 1997 The Centromere (Oxford: Published by Oxford University Press)

    Google Scholar 

  • Chuang LSH, Ian H-I, Koh T-W, Ng H, Xu G and Li BFL 1997 Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science. 277 1996–2000

    Article  CAS  PubMed  Google Scholar 

  • Clowney EJ, LeGros MA, Mosley CP, Clowney FG, Markenskoff-Papadimitriou EC, Myllys M et al. 2012 Nuclear aggregation of olfactory receptor genes governs their monogenic expression. Cell 151 724–37

  • Cowell IG, Aucott R, Mahadevaiah SK, Burgoyne PS, Huskisson N, Bongiorni S, et al. 2002 Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 111 22–36

  • Crouse HV 1960 The controlling element in sex chromosome behavior in Sciara. Genetics 45 1429

  • Crouse HV 1977 X heterochromatin subdivision and cytogenetic analysis in Sciara coprophila (Diptera, Sciaridae). Chromosoma 63 39–55

  • Crouse HV 1979 X heterochromatin subdivision and cytogenetic analysis in Sciara coprophila (Diptera, Sciaridae). Chromosoma 74 219–239

  • Crouse H, Gerbi SA, Liang CM, Magnus L and Mercer IM 1977 Localization of ribosomal DNA within the proximal X heterochromatin of Sciara coprophila (Diptera, Sciaridae). Chromosoma 64 305–318

  • Csink AK and Henikoff S 1996 Genetic modification of heterochromatic association and nuclear organization in Drosophila Proc Natl Acad Sci USA 93 6659–6664

  • Davis TL, Yang GJ, McCarrey JR and Bartolomei MS 2000 The H19 methylation imprint is erased and re‐established differentially on the parental alleles during male germ cell development. Hum. Mol. Genet. 9 2885–2894

    Article  CAS  PubMed  Google Scholar 

  • De La Fuente R, Baumann C and Viveiros MM 2015 ATRX contributes to epigenetic asymmetry and silencing of major satellite transcripts in the maternal genome of the mouse embryo. Development 142 1806–1817

  • de Saint Phalle B and Sullivan W 1996 Incomplete sister chromatid separation is the mechanism of programmed chromosome elimination during early Sciara coprophila embryogenesis. Development 122 3775–3784

  • Dinant C and Luijsterburg MS 2009 The emerging role of HP1 in the DNA damage response. Mol. Cell. Biol. 29 6335–6340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. 2012 Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485 376–380

  • Drané P, Ouararhni K, Depaux A, Shuaib M and Hamiche A 2010 The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3. 3. Genes Dev. 24 1253–1265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eastman EM, Goodman RM, Erlanger BF and Miller OJ 1980 5-Methylcytosine in the DNA of the polytene chromosomes of the dipteraSciara coprophila, Drosophila melanogaster andD. persimilis. Chromosoma 79 225–239

  • Elgin SCR and Reuter G 2013 Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb. Perspect. Biol. 5 a017780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elsässer SJ, Noh K-M, Diaz N, Allis CD and Banaszynski LA 2015 Histone H3. 3 is required for endogenous retroviral element silencing in embryonic stem cells. Nature 522 240–244

  • Epstein H, James TC and Singh PB 1992 Cloning and expression of Drosophila HP1 homologs from a mealybug, Planococcus citri. J. Cell Sci. 101 463–474

    CAS  PubMed  Google Scholar 

  • Escribá MC and Goday C 2013 Histone H3 phosphorylation and elimination of paternal X chromosomes at early cleavages in sciarid flies. J. Cell Sci. 126 3214–3222

    Article  PubMed  CAS  Google Scholar 

  • Eustermann S, Yang J-C, Law MJ, Amos R, Chapman LM, Jelinska C, et al. 2011 Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin. Nat. Struct. Mol. Biol. 18 777–782

    Article  CAS  PubMed  Google Scholar 

  • Ferguson-Smith AC 2011 Genomic imprinting: the emergence of an epigenetic paradigm. Nat. Rev. Genet. 12 565–575

    Article  CAS  PubMed  Google Scholar 

  • Festenstein R, Pagakis SN, Hiragami K, Lyon D, Verreault A, Sekkali B and Kioussis D 2003 Modulation of heterochromatin protein 1 dynamics in primary mammalian cells. Science 299 719–721

  • Field LM, Lyko F, Mandrioli M and Prantera G 2004 DNA methylation in insects. Insect Mol. Biol. 13 109–115

    Article  CAS  PubMed  Google Scholar 

  • Francastel C, Magis W and Groudine M 2001 Nuclear relocation of a transactivator subunit precedes target gene activation. Proc. Natl. Acad. Sci. 98 12120–12125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang X-P, Neilson EG and Rauscher FJ 1996 KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 10 2067–2078

    Article  CAS  PubMed  Google Scholar 

  • Frietze S, O'Geen H, Blahnik KR, Jin VX and Farnham PJ 2010 ZNF274 recruits the histone methyltransferase SETDB1 to the 3′ ends of ZNF genes. PLoS One 5 e15082

  • Fritsch L, Robin P, Mathieu JRR, Souidi M, Hinaux H, Rougeulle C, et al. 2010 A subset of the histone H3 lysine 9 methyltransferases Suv39h1, G9a, GLP, and SETDB1 participate in a multimeric complex. Mol. Cell. 37 46–56

    Article  CAS  PubMed  Google Scholar 

  • Fuks F, Hurd PJ, Deplus R and Kouzarides T 2003 The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res. 31 2305–2312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda A, Tomikawa J, Miura T, Hata K, Nakabayashi K, Eggan K, et al. 2014 The role of maternal-specific H3K9me3 modification in establishing imprinted X-chromosome inactivation and embryogenesis in mice. Nat. Commun. 5 5464

  • Funaki S, Nakamura T, Nakatani T, Umehara H, Nakashima H and Nakano T 2014 Inhibition of maintenance DNA methylation by Stella. Biochem. Biophys. Res. Commun. 453 455–460

    Article  CAS  PubMed  Google Scholar 

  • Gagnon-Kugler T, Langlois F, Stefanovsky V, Lessard F and Moss T 2009 Loss of human ribosomal gene CpG methylation enhances cryptic RNA polymerase II transcription and disrupts ribosomal RNA processing. Mol. Cell. 35 414–425

    Article  CAS  PubMed  Google Scholar 

  • García-Cao M, O'Sullivan R, Peter AHFM, Jenuwein T and Blasco MA 2004 Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat. Genet. 36 94–99

    Article  PubMed  CAS  Google Scholar 

  • Gasser R, Koller T and Sogo JM 1996 The stability of nucleosomes at the replication fork. J. Mol. Biol. 258 224–239

    Article  CAS  PubMed  Google Scholar 

  • Gaunt SJ and Singh PB 1990 Homeogene expression patterns and chromosomal imprinting. Trends Genet. 6 208–212

    CAS  PubMed  Google Scholar 

  • Gerbi SA 1986 Unusual chromosome movements in sciarid flies; in Germ Line—Soma Differentiation (Springer) pp 71–104

  • Gerbi SA 2007 Helen Crouse (1914–2006): imprinting and chromosome behavior. Genetics 175 1–6

  • Giri S, Aggarwal V, Pontis J, Shen Z, Chakraborty A, Khan A, et al. 2015 The preRC protein ORCA organizes heterochromatin by assembling histone H3 lysine 9 methyltransferases on chromatin. Elife 4 e06496

  • Goday C and Ruiz MF 2002 Differential acetylation of histones H3 and H4 in paternal and maternal germline chromosomes during development of sciarid flies. J. Cell Sci. 115 4765–4775

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AD, Banaszynski LA, Noh K-M, Lewis PW, Elsaesser SJ, Stadler S, et al. 2010 Distinct factors control histone variant H3. 3 localization at specific genomic regions. Cell. 140 678–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalo S, García-Cao M, Fraga MF, Schotta G, Peters AHFM, Cotter SE, et al. 2005 Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat. Cell Biol. 7 420–428

    Article  CAS  PubMed  Google Scholar 

  • Greciano PG and Goday C 2006 Methylation of histone H3 at Lys4 differs between paternal and maternal chromosomes in Sciara ocellaris germline development. J. Cell Sci. 119 4667–4677

    Article  CAS  PubMed  Google Scholar 

  • Groner AC, Meylan S, Ciuffi A, Zangger N, Ambrosini G, Dénervaud N, et al. 2010 KRAB–zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genet. 6 e1000869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guenatri M, Bailly D, Maison C and Almouzni G 2004 Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J. Cell Biol. 166 493–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guetg C, Lienemann P, Sirri V, Grummt I, Hernandez‐Verdun D, Hottiger MO, et al. 2010 The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats. EMBO J. 29 2135–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guibert S, Forné T and Weber M 2012 Global profiling of DNA methylation erasure in mouse primordial germ cells. Genome Res. 22 633–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo H, Zhu P, Yan L, Li R, Hu B, Lian Y, et al. 2014 The DNA methylation landscape of human early embryos. Nature. 511 606–610

    Article  CAS  PubMed  Google Scholar 

  • Hackett JA and Surani MA 2013 DNA methylation dynamics during the mammalian life cycle. Philos. Trans. R. Soc. B. 368 20110328

    Article  CAS  Google Scholar 

  • Hanna CW and Kelsey G 2014 The specification of imprints in mammals. Heredity. 113 176–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hediger F and Gasser SM 2006 Heterochromatin protein 1: don’t judge the book by its cover! Curr. Opin. Genet. Dev. 16 143–150

    Article  CAS  PubMed  Google Scholar 

  • Heitz E 1928 Das heterochromatin der moose. I Jahrb wiss Bot 69 762–818

  • Henckel A, Nakabayashi K, Sanz LA, Feil R, Hata K and Arnaud P 2009 Histone methylation is mechanistically linked to DNA methylation at imprinting control regions in mammals. Hum. Mol. Genet. 18 3375–3383

    Article  CAS  PubMed  Google Scholar 

  • Hendrich B and Bird A 1998 Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol. 18 6538–6547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiragami-Hamada K, Soeroes S, Nikolov M, Wilkins B, Kreuz S, Chen C, et al. 2016 Dynamic and flexible H3K9me3 bridging via HP1 [beta] dimerization establishes a plastic state of condensed chromatin. Nat. Commun. 7 11310

  • Hirasawa R, Chiba H, Kaneda M, Tajima S, Li E, Jaenisch R and Sasaki H 2008 Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes Dev. 22 1607–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiura H, Obata Y, Komiyama J, Shirai M and Kono T 2006 Oocyte growth‐dependent progression of maternal imprinting in mice. Genes Cells 11 353–361

  • Horsley D, Hutchings A, Butcher GW and Singh PB 1996 M32, a murine homologue of Drosophila heterochromatin protein 1 (HP1), localises to euchromatin within interphase nuclei and is largely excluded from constitutive heterochromatin. Cytogenet. Genome Res. 73 308–311

    Article  CAS  Google Scholar 

  • Howell CY, Bestor TH, Ding F, Latham KE, Mertineit C, Trasler JM, et al. 2001 Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104 829–838

  • Hughes-Schrader S 1948 Cytology of coccids (Coccoidea-Homoptera). Adv. Genet. 2 127–203

    Google Scholar 

  • International Human Genome Sequencing C 2004 Finishing the euchromatic sequence of the human genome. Nature. 431 931–945

    Article  CAS  Google Scholar 

  • Ishiuchi T., Enriquez-Gasca R, Mizutani E, Bošković A, Ziegler-Birling C, Rodriguez-Terrones D, et al. 2015 Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly. Nat. Struct. Mol. Biol. 22 662-671

  • Ivanov AV, Peng H, Yurchenko V, Yap KL, Negorev DG, Schultz DC, et al. 2007 PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol. Cell. 28 823–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyengar S and Farnham PJ 2011 KAP1 protein: an enigmatic master regulator of the genome. J. Biol. Chem. 286 26267–26276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaenisch R and Bird A 2003 Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33 245–254

    Article  CAS  PubMed  Google Scholar 

  • Johnson A and O'Donnell M 2005 Cellular DNA replicases: components and dynamics at the replication fork. Annu. Rev. Biochem. 74 283–315

    Article  CAS  PubMed  Google Scholar 

  • Jones DO, Cowell IG and Singh PB 2000 Mammalian chromodomain proteins: their role in genome organisation and expression. Bioessays 22 124–137

  • Jurkowska RZ, Rajavelu A, Anspach N, Urbanke C, Jankevicius G, Ragozin S, et al. 2011 Oligomerization and binding of the Dnmt3a DNA methyltransferase to parallel DNA molecules heterochromatic localization and role of Dnmt3L. J. Biol. Chem. 286 24200–24207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato Y, Kaneda M, Hata K, Kumaki K, Hisano M, Kohara Y, et al. 2007 Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum. Mol. Genet. 16 2272–2280

    Article  CAS  PubMed  Google Scholar 

  • Kelsey G and Feil R 2013 New insights into establishment and maintenance of DNA methylation imprints in mammals. Philos. Trans. R. Soc. B. 368 20110336

    Article  CAS  Google Scholar 

  • Khosla S, Kantheti P, Brahmachari V and Chandra HS 1996 A male-specific nuclease-resistant chromatin fraction in the mealybug Planococcus lilacinus. Chromosoma 104 386–392

  • Khosla S, Augustus M and Brahmachari V 1999 Sex-specific organisation of middle repetitive DNA sequences in the mealybug Planococcus lilacinus. Nucleic Acids Res. 27 3745–3751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kigami D, Minami N, Takayama H and Imai H 2003 MuERV-L is one of the earliest transcribed genes in mouse one-cell embryos. Biol. Reprod. 68 651–654

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Sif S, Jones B, Jackson A, Koipally J, Heller E, et al. 1999 Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity 10 345–355

  • Ko MSH 2016 Zygotic genome activation revisited: looking through the expression and function of Zscan4. Curr. Top. Dev. Biol. 120 103-124

  • Kobayashi H, Suda C, Abe T, Kohara Y, Ikemura T and Sasaki H 2006 Bisulfite sequencing and dinucleotide content analysis of 15 imprinted mouse differentially methylated regions (DMRs): paternally methylated DMRs contain less CpGs than maternally methylated DMRs. Cytogenet. Genome Res. 113 130–137

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A, Yayoi O, et al. 2012 Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet. 8 e1002440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kourmouli N, Jeppesen P, Mahadevhaiah S, Burgoyne P, Wu R, Gilbert DM, et al. 2004 Heterochromatin and tri-methylated lysine 20 of histone H4 in animals. J. Cell Sci. 117 2491–2501

    Article  CAS  PubMed  Google Scholar 

  • Kourmouli N, Sun Y-M, van der Sar S, Singh PB and Brown JP 2005 Epigenetic regulation of mammalian pericentric heterochromatin in vivo by HP1. Biochem. Biophys. Res. Commun. 337 901–907

    Article  CAS  PubMed  Google Scholar 

  • Krouwels IM, Wiesmeijer K, Abraham TE, Molenaa C, Verwoerd NP, Tanke HJ and Dirks RW 2005 A glue for heterochromatin maintenance stable SUV39H1 binding to heterochromatin is reinforced by the SET domain. J. Cell Biol. 170 537–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurihara Y, Kawamura Y, Uchijima Y, Amamo T, Kobayashi H, Asano T and Kurihara H 2008 Maintenance of genomic methylation patterns during preimplantation development requires the somatic form of DNA methyltransferase 1. Dev. Biol. 313 335–346

    Article  CAS  PubMed  Google Scholar 

  • Kwon SH and Workman JL 2008 The heterochromatin protein 1 (HP1) family: put away a bias toward HP1. Mol. Cell. 26 217–227

    CAS  Google Scholar 

  • Le Dily F, Baù D, Pohl A, Vicent GP, Serra F, Soronellas D, et al. 2014 Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation. Genes Dev. 28 2151–2162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le Douarin B, Nielsen AL, Garnier JM, Ichinose H, Jeanmougin F, Losson R and Chambon P 1996 A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. EMBO J. 15 6701

    PubMed  PubMed Central  Google Scholar 

  • Lechner MS, Begg GE, Speicher DW and Rauscher FJ 2000 Molecular determinants for targeting heterochromatin protein 1-mediated gene silencing: direct chromoshadow domain–KAP-1 corepressor interaction is essential. Mol. Cell. Biol. 20 6449–6465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehnertz B, Ueda Y, Derijck AAHA, Braunschweig U, Perez-Burgos L, Kubicek S, et al. 2003 Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13 1192–1200

    Article  CAS  PubMed  Google Scholar 

  • Leonhardt H, Page AW, Weier H-U and Bestor TH 1992 A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71 865–873

  • Leseva M, Knowles BB Messerschmidt DM and Solter D 2015 Erase–Maintain–Establish: Natural Reprogramming of the Mammalian Epigenome; in Cold Spring Harb. Symp. Quant. Biol. (Cold Spring Harbor Laboratory Press) 80 155–163

  • Leung D, Du T, Wagner U, Xie W, Lee AY, Goyal P, et al. 2014 Regulation of DNA methylation turnover at LTR retrotransposons and imprinted loci by the histone methyltransferase Setdb1. Proc. Natl. Acad. Sci. 111 6690–6695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis EB 1950 The phenomenon of position effect. Adv. Genet. 3 73–115

    CAS  PubMed  Google Scholar 

  • Li E and Zhang Y 2014 DNA methylation in mammals. Cold Spring Harb. Perspect. Biol. 6 a019133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li E, Beard C and Jaenisch R 1993 Role for DNA methylation in genomic imprinting. Nature 366 362–365

  • Li X, Ito M, Zhou F, Youngson N, Zu X, Leder P and Ferguson-Smith AC 2008 A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev. Cell. 15 547–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Toh H, Sasaki H, Zhang X and Cheng X 2012 An atomic model of Zfp57 recognition of CpG methylation within a specific DNA sequence. Genes Dev. 26 2374–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Gao Q, Li P, Zha Q, Zhang J, Li J, et al. 2013 UHRF1 targets DNMT1 for DNA methylation through cooperative binding of hemi-methylated DNA and methylated H3K9. Nat. Commun. 4 1563

    Article  PubMed  CAS  Google Scholar 

  • Loppin B, Bonnefoy E, Anselme C, Laurençon A, Karr TL and Couble P 2005 The histone H3. 3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437 1386–1390

  • Loyola A, Tagami H, Bonaldi T, Roche D, Quivy JP, Imhof A, et al. 2009 The HP1α–CAF1–SetDB1‐containing complex provides H3K9me1 for Suv39‐mediated K9me3 in pericentric heterochromatin. EMBO Rep. 10 769–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubit BW, Duc PT, Miller OJ and Erlanger BF 1976 Localization of 5-methylcytosine in human metaphase chromosomes by immunoelectron microscopy. Cell 9 503–509

  • Lupo A, Cesaro E, Montano G, Zurlo D, Izzo P and Costanzo P 2013 KRAB-zinc finger proteins: a repressor family displaying multiple biological functions. Curr. Genomics 14 268–278

  • Lyon MF 1961 Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 90 372–3

  • Lyon MF and Rastan S 1984 Parental source of chromosome imprinting and its relevance for X chromosome inactivation. Differentiation 26 63–67

  • Lyons DB, Magklara A, Goh T, Sampath SC, Schaefer A, Schotta G, et al. 2014 Heterochromatin-mediated gene silencing facilitates the diversification of olfactory neurons. Cell Rep. 9 884–92

  • Macfarlan TS, Gifford WD, Agarwal S, Driscoll S, Lettieri K, Wang J, et al. 2011 Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev. 25 594–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magklara A, Yen A, Colquitt BM, Clowney EJ, Allen W, Markenscoff-Papadimitriou E, et al. 2011 An epigenetic signature for monoallelic olfactory receptor expression. Cell 145 555–570

  • Maison C and Almouzni G 2004 HP1 and the dynamics of heterochromatin maintenance. Nat. Rev. Mol. Cell Biol. 5 296–305

    Article  CAS  PubMed  Google Scholar 

  • Maksakova IA, Thompson PJ, Goyal P, Jones SJM, Singh PB, Karimi MM and Lorincz MC 2013 Distinct roles of KAP1, HP1 and G9a/GLP in silencing of the two-cell-specific retrotransposon MERVL in mouse ES cells. Epigenetics Chromatin 6 1

    Article  CAS  Google Scholar 

  • Manukyan M and Singh PB 2012 Epigenetic rejuvenation. Genes Cells. 17 337–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manukyan M and Singh PB 2014 Epigenome rejuvenation: HP1β mobility as a measure of pluripotent and senescent chromatin ground states. Sci. Rep. 4

  • Marión RM and Blasco MA 2010 Telomere rejuvenation during nuclear reprogramming. Curr. Opin. Genet. Dev. 20 190–196

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Beaujean N, Brochard V, Audouard C, Zink D and Debey P 2006 Genome restructuring in mouse embryos during reprogramming and early development. Dev. Biol. 292 317–332

    Article  CAS  PubMed  Google Scholar 

  • Mateescu B, Bourachot B, Rachez C, Ogryzko V and Muchardt 2008 Regulation of an inducible promoter by an HP1β–HP1γ switch. EMBO Rep. 9 267–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matoba S, Liu Y, Lu F, Iwabuchi KA, Shen L, Inoue A and Zhang Y 2014 Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell. 159 884–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda E, Agata Y, Sugai M, Katakai T, Gonda H and Shimizu A 2001 Targeting of Krüppel-associated Box-containing Zinc Finger Proteins to Centromeric Heterochromatin IMPLICATION FOR THE GENE SILENCING MECHANISMS. J. Biol. Chem. 276 14222–14229

    Article  CAS  PubMed  Google Scholar 

  • Mayer W, Niveleau A, Walter J, Fundele R and Haaf T 2000a Embryogenesis: demethylation of the zygotic paternal genome. Nature 403 501–502

  • Mayer W, Smith A, Fundele R and Haaf T 2000b Spatial separation of parental genomes in preimplantation mouse embryos. J. Cell Biol. 148 629–634

  • McClintock B 1951 Chromosome organization and genic expression; in Cold Spring Harb. Symp. Quant. Biol. (Cold Spring Harbor Laboratory Press) pp 13–47

  • McEwen KR and Ferguson-Smith AC 2010 Distinguishing epigenetic marks of developmental and imprinting regulation. Epigenetics Chromatin 3 1

  • McGrath J and Solter D 1984 Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37 179–183

  • McStay B 2016 Nucleolar organizer regions: genomic ‘dark matter’requiring illumination. Genes Dev. 30 1598–1610

    Article  CAS  PubMed  Google Scholar 

  • Meehan RR, Kao CF and Pennings S 2003 HP1 binding to native chromatin in vitro is determined by the hinge region and not by the chromodomain. EMBO J. 22 3164–3174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meglicki M, Teperek-Tkacz M and Borsuk E 2012 Appearance and heterochromatin localization of HP1α in early mouse embryos depends on cytoplasmic clock and H3S10 phosphorylation. Cell Cycle 11 2189–2205

  • Melcher M, Schmid M, Aagaard L, Selenko P, Laible G and Jenuwein T 2000 Structure-function analysis of SUV39H1 reveals a dominant role in heterochromatin organization, chromosome segregation, and mitotic progression. Mol. Cell. Biol. 20 3728–3741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendel G 1866 Versuche uber Pflanzen-Hybriden. Verh. Naturforsch. Ver. Brunn 4 3-47 English translation in 1901. J. R. Hortic. Soc. 26 1–32

  • Mermoud JE, Rowbotham SP and Varga-Weisz PD 2011 Keeping chromatin quiet: how nucleosome remodeling restores heterochromatin after replication. Cell Cycle 10 4017–4025

  • Messerschmidt DM, Knowles BB and Solter D 2014 DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev. 28 812–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metz CW 1938 Chromosome behavior, inheritance and sex determination in Sciara. Am. Nat. 72 485–520

    Article  Google Scholar 

  • Minc E, Allory Y, Worman HJ, Courvalin J-C and Buendia B 1999 Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 108 220–234

  • Mohan KN and Chandra HS 2005 Isolation and analysis of sequences showing sex-specific cytosine methylation in the mealybug Planococcus lilacinus. Mol. Genet. Genomics 274 557–568

  • Mombaerts P 2001 The human repertoire of odorant receptor genes and pseudogenes. Ann. Rev. Genomics Hum. Genet. 2 493–510

  • Moosmann P, Georgiev O, Le Douarin B, Bourquin J-P and Schaffner W 1996 Transcriptional repression by RING finger protein TIF1β that interacts with the KRAB repressor domain of KOX1. Nucleic Acids Res. 24 4859–4867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muchardt C, Guillemé M, Seeler JS, Trouche D, Dejean A and Yaniv M 2002 Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1α. EMBO Rep. 3 975–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murayama A, Ohmori K, Fujimura A, Minami H, Yasuzawa-Tanaka K, Kuroda T, et al. 2008 Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133 627–639

  • Murzina N, Verreault A, Laue E and Stillman B 1999 Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol. Cell. 4 529–540

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Arai Y, Umehara H, Masuhara M, Kimura T, Taniguchi H, et al. 2007 PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat. Cell Biol. 9 64–71

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Liu Y-J, Nakashima H, Umehara H, Inoue K, Matoba S, et al. 2012 PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486 415–419

  • Nelson‐Rees WA 1960 A study of sex predetermination in the mealy bug Planococcus citri (Risso). J. Exp. Zool. 144 111–137

    Article  PubMed  Google Scholar 

  • Nielsen AL, Oulad-Abdelghani M, Ortiz JA, Remboutsika E, Chambon P and Losson R 2001 Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins. Mol. Cell. 7 729–739

    Article  CAS  PubMed  Google Scholar 

  • Nielsen PR, Nietlispach D, Mott HR, Callaghan J, Bannister A, Kouzarides T, et al. 2002 Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416 103–107

  • Nozawa R-S, Nagao K, Masuda H-T, Iwasaki O, Hirota T, Nozaki N, et al. 2010 Human POGZ modulates dissociation of HP1α from mitotic chromosome arms through Aurora B activation. Nat. Cell Biol. 12 719–727

    Article  CAS  PubMed  Google Scholar 

  • Obata Y and Kono T 2002 Maternal primary imprinting is established at a specific time for each gene throughout oocyte growth. J. Biol. Chem. 277 5285–5289

    Article  CAS  PubMed  Google Scholar 

  • O'Geen H, Squazzo SL, Iyengar S, Blahnik K, Rinn JL, Chang HY, et al. 2007 Genome-wide analysis of KAP1 binding suggests autoregulation of KRAB-ZNFs. PLoS Genet. 3 e89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Onder TT, Kara N, Cherry A, Sinha AU, Zhu N, Bernt KM, et al. 2012 Chromatin-modifying enzymes as modulators of reprogramming. Nature 483 598–602

  • Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, et al. 2000 Active demethylation of the paternal genome in the mouse zygote. Curr. Biol. 10 475–478

    Article  CAS  PubMed  Google Scholar 

  • Pak DTS, Pflumm M, Chesnokov I, Huang DW, Kellum R, Marr J, et al. 1997 Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes. Cell. 91 311–323

    Article  CAS  PubMed  Google Scholar 

  • Pannetier M, Julien E, Schotta G, Tardat M, Sardet C, Jenuwein T and Feil R 2008 PR‐SET7 and SUV4‐20H regulate H4 lysine‐20 methylation at imprinting control regions in the mouse. EMBO Rep. 9 998–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papait R, Pistore C, Negri D, Pecoraro D, Cantarini L and Bonapace IM 2007 Np95 is implicated in pericentromeric heterochromatin replication and in major satellite silencing. Mol. Biol. Cell. 18 1098–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papait R, Pistore C, Grazini U, Babbio F, Cogliati S, Pecoraro D, et al. 2008 The PHD domain of Np95 (mUHRF1) is involved in large-scale reorganization of pericentromeric heterochromatin. Mol. Biol. Cell. 19 3554–3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paro R 1990 Imprinting a determined state into the chromatin of Drosophila. Trends Genet. 6 416–421

    Article  CAS  PubMed  Google Scholar 

  • Parry AJ and Narita M 2016 Old cells, new tricks: chromatin structure in senescence. Mamm. Genome 1–12

  • Peng H, Begg GE, Schultz DC, Friedman JR, Jensen DE, Speicher DW and Rauscher FJ 2000 Reconstitution of the KRAB-KAP-1 repressor complex: a model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions. J. Mol. Biol. 295 1139–1162

    Article  CAS  PubMed  Google Scholar 

  • Peters AHFM, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schöfer C, et al. 2001 Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107 323–337

  • Popp C, Dean W, Feng S, Cokus SJ, Andrews S, Pellegrini M, et al. 2010 Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature. 463 1101–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasanth SG, Shen Z, Prasanth KV and Stillman B 2010 Human origin recognition complex is essential for HP1 binding to chromatin and heterochromatin organization. Proc. Natl. Acad. Sci. 107 15093–15098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Probst AV, Santos F, Reik W, Almouzni G and Dean W 2007 Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote. Chromosoma 116 403–415

  • Probst AV, Okamoto I, Casanova M, El Marjou F, Le Baccon P and Almouzni G 2010 A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev. Cell 19 625–638

  • Proudhon C, Duffié R, Ajjan S, Cowley M, Iranzo J, Carbajosa G, et al. 2012 Protection against de novo methylation is instrumental in maintaining parent-of-origin methylation inherited from the gametes. Mol. Cell 47 909–920

  • Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J, Offner S, et al. 2011 In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol. Cell. 44 361–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapkin LM, Ahmed K, Dulev S, Li R, Kimura H, Ishov AM and Bazett-Jones DP 2015 The histone chaperone DAXX maintains the structural organization of heterochromatin domains. Epigenetics Chromatin 8 1

  • Ratnam S, Mertineit C, Ding F, Howell CY, Clarke HJ, Bestor TH, et al. 2002 Dynamics of Dnmt1 methyltransferase expression and intracellular localization during oogenesis and pre-implantation development. Dev. Biol. 245 304–314

    Article  CAS  PubMed  Google Scholar 

  • Rebollo R, Miceli-Royer K, Zhang Y, Farivar S, Gagnier L and Mager DL 2012 Epigenetic interplay between mouse endogenous retroviruses and host genes. Genome Biol. 13 1

    Article  CAS  Google Scholar 

  • Regha K, Sloane MA, Huang R, Pauler FM, Warczok KE, Melikant B, et al. 2007 Active and repressive chromatin are interspersed without spreading in an imprinted gene cluster in the mammalian genome. Mol. Cell 27 353–366

  • Reik W and Surani MA 2015 Germline and pluripotent stem cells. Cold Spring Harb. Perspect. Biol. 7 a019422

    Article  PubMed  CAS  Google Scholar 

  • Rens W, Wallduck MS, Lovell FL, Ferguson-Smith MA and Ferguson-Smith AC 2010 Epigenetic modifications on X chromosomes in marsupial and monotreme mammals and implications for evolution of dosage compensation. Proc. Natl. Acad. Sci. 107 17657–17662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riclet R, Chendeb M, Vonesch J-L, Koczan D, Thiesen H-J, Losson R and Cammas F 2009 Disruption of the interaction between transcriptional intermediary factor 1β and heterochromatin protein 1 leads to a switch from DNA hyper-to hypomethylation and H3K9 to H3K27 trimethylation on the MEST promoter correlating with gene reactivation. Mol. Biol. Cell. 20 296–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rottach A, Frauer C, Pichler G, Bonapace IM, Spada F and Leonhardt H 2010 The multi-domain protein Np95 connects DNA methylation and histone modification. Nucleic Acids Res. 38 1796–1804

    Article  CAS  PubMed  Google Scholar 

  • Rowbotham SP, Barki L, Neves-Costa A, Santos F, Dean W, Hawkes N, et al. 2011 Maintenance of silent chromatin through replication requires SWI/SNF-like chromatin remodeler SMARCAD1. Mol. Cell. 42 285–296

    Article  CAS  PubMed  Google Scholar 

  • Ryan RF, Schultz DC, Ayyanathan K, Singh PB, Friedman JR, Fredericks WJ and Rauscher FJ 1999 KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Krüppel-associated box–zinc finger proteins in heterochromatin-mediated gene silencing. Mol. Cell. Biol. 19 4366–4378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santenard A, Ziegler-Birling C, Koch M, Tora L, Bannister AJ and Torres-Padilla M-E 2010 Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3. 3. Nat. Cell Biol. 12 853–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santoro R, Li J and Grummt I 2002 The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat. Genet. 32 393–396

    Article  CAS  PubMed  Google Scholar 

  • Santos F and Dean W 2004 Epigenetic reprogramming during early development in mammals. Reproduction 127 643–651

  • Santos F, Peters AH, Otte AP, Reik W and Dean W 2005 Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev. Biol. 280 225–236

    Article  CAS  PubMed  Google Scholar 

  • Sasaki H and Matsui Y 2008 Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat. Rev. Genet. 9 129–140

    Article  CAS  PubMed  Google Scholar 

  • Saunders WS, Chue C, Goebl M, Craig C, Clark RF, Powers JA, et al. 1993 Molecular cloning of a human homologue of Drosophila heterochromatin protein HP1 using anti-centromere autoantibodies with anti-chromo specificity. J. Cell Sci. 104 573–582

    PubMed  Google Scholar 

  • Schmiedeberg L, Weisshart K, Diekmann S, Meyer zu Hoerste G and Hemmerich P 2004 High-and low-mobility populations of HP1 in heterochromatin of mammalian cells. Mol. Biol. Cell. 15 2819–2833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz K-M, Mayer C, Postepska A and Grummt I 2010 Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev. 24 2264–2269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, et al. 2004 A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 18 1251–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz RM and Worrad DM 1995 Role of chromatin structure in zygotic gene activation in the mammalian embryo, in Semin. Cell Biol. (Elsevier) pp 201–208

  • Schultz DC, Friedman JR and Rauscher FJ 2001 Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2α subunit of NuRD. Genes Dev. 15 428–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz DC, Ayyanathan K, Negorev D, Maul GG and Rauscher FJ 2002 SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 16 919–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz R, Proudhon C, Bestor TH, Woodfine K, Lin C-S, Lin S-P, et al. 2010 The parental non-equivalence of imprinting control regions during mammalian development and evolution. PLoS Genet. 6 e1001214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwaiger M, Kohler H, Oakeley EJ, Stadler MB and Schübeler D 2010 Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome. Genome Res. 20 771–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, et al. 2012 The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol. Cell. 48 849–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharif J, Muto M, Takebayashi S-i, Suetake I, Iwamatsu, A, Endo TA, et al. 2007 The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450 908–912

  • Shibahara K-I and Stillman B 1999 Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96 575–585

  • Shirane K, Toh H, Kobayashi H, Miura F, Chiba H, Ito T, et al. 2013 Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLoS Genet. 9 e1003439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon I, Tenzen T, Reubinoff BE, Hillman D, McCarry JR and Cedar H 1993 Asynchronous replication of imprinted genes is established in the gametes and maintained during development. Nature 401 929–932

  • Singh PB 1994 Molecular mechanisms of cellular determination: their relation to chromatin structure and parental imprinting. J. Cell Sci. 107 2653–2668

    CAS  PubMed  Google Scholar 

  • Singh PB 2010 HP1 proteins—What is the essential interaction? Russ. J. Genet. 46 1257–1262

    Article  CAS  Google Scholar 

  • Singh PB and Zacouto F 2010 Nuclear reprogramming and epigenetic rejuvenation. J. Biosci. 35 315–319

    Article  PubMed  Google Scholar 

  • Singh PB, Miller JR, Pearce J, Kothary R, Burton RD, Paro R, et al. 1991 A sequence motif found in a Drosophila heterochromatin protein is conserved in animals and plants. Nucleic Acids Res. 19 789–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirbu BM, Couch FB, Feigerle JT, Bhaskara S, Hiebert SW and Cortez D 2011 Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev. 25 1320–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slatis HM 1955 Position effects at the brown locus in Drosophila melanogaster. Genetics 40 5

  • Smallwood A, Estève P-O, Pradhan S and Carey M 2007 Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev. 21 1169–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smallwood SA, S-i T, Krueger F, Ruf N, Carli N, Segonds-Pichon A, et al. 2011 Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat. Genet. 43 811–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smallwood A, Hon GC, Jin F, Henry RE, Espinosa JM and Ren B 2012 CBX3 regulates efficient RNA processing genome-wide. Genome Res. 22 1426–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith S and Stillman B 1989 Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58 15–25

  • Smith ZD, Chan MM, Humm KC, Karnik R, Mekhoubad S, Regev A, et al. 2014 DNA methylation dynamics of the human preimplantation embryo. Nature. 511 611–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith ZD, Sindhu C and Meissner A 2016 Molecular features of cellular reprogramming and development. Nat. Rev. Mol. Cell Biol. 17 139–154

    Article  CAS  PubMed  Google Scholar 

  • Smothers JF and Henikoff S 2000 The HP1 chromo shadow domain binds a consensus peptide pentamer. Curr. Biol. 10 27–30

    Article  CAS  PubMed  Google Scholar 

  • Sobel RE, Cook RG, Perry CA, Annunziato AT and Allis CD 1995 Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl. Acad. Sci. 92 1237–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spofford JB 1959 Parental control of position-effect variegation: I. Parental heterochromatin and expression of the white locus in compound-X Drosophila melanogaster. Proc. Natl. Acad. Sci. 45 1003–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spofford JB 1961 Parental control of position-effect variegation. II. Effect of sex of parent contributing white-mottled rearrangement in Drosophila melanogaster. Genetics 46 1151

  • Spofford JB 1976 Position-effect variegation in Drosophila; in The genetics and biology of Drosophila Vol. 1 (pp 955–1018)

  • Sridharan R, Gonzales-Cope M, Chronis C, Bonora G, McKee R, Huang C, et al. 2013 Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency. Nat. Cell Biol. 15 872–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sripathy SP, Stevens J and Schultz DC 2006 The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression. Mol. Cell. Biol. 26 8623–8638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strogantsev R, Krueger F, Yamazawa K, Shi H, Gould P, Goldman-Roberts M, et al. 2015 Allele-specific binding of ZFP57 in the epigenetic regulation of imprinted and non-imprinted monoallelic expression. Genome Biol. 16 1

    Article  CAS  Google Scholar 

  • Stults DM, Killen MW, Pierce HH and Pierce AJ 2008 Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Res. 18 13–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surani MA, Barton SC and Norris ML 1984 Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature. 308 548–550

    Article  CAS  PubMed  Google Scholar 

  • Tagami H, Ray-Gallet D, Almouzni G and Nakatani Y 2004 Histone H3. 1 and H3. 3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116 51–61

  • Takagi N and Sasaki M 1975 Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256 640–642

  • Takikawa S, Wang X, Ray C, Vakulenko M, Bell FT and Li X 2013 Human and mouse ZFP57 proteins are functionally interchangeable in maintaining genomic imprinting at multiple imprinted regions in mouse ES cells. Epigenetics 8 1268–1279

  • Tardat M, Albert M, Kunzmann R, Liu Z, Kaustov L, Thierry R, et al. 2015 Cbx2 targets PRC1 to constitutive heterochromatin in mouse zygotes in a parent-of-origin-dependent manner. Mol. Cell. 58 157–171

    Article  CAS  PubMed  Google Scholar 

  • Tarkowski AK 1959 Experiments on the development of isolated blastomeres of mouse eggs. Nature 184 1286–1287

  • Thiru A, Nietlispach D, Mott HR, Okuwaki M, Lyon D, Nielsen PR, et al. 2004 Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin. EMBO J. 23 489–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomizawa S, Kobayashi H, Watanabe T, Andrews S, Hata K, Kelsey G et al. 2011 Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes. Development 138 811–820

  • Tomizawa S-I, Nowacka-Woszuk J and Kelsey G 2013 DNA methylation establishment during oocyte growth: mechanisms and significance. Int. J. Dev. Biol. 56 867–875

    Article  CAS  Google Scholar 

  • Torres-Padilla M-E, Bannister AJ, Hurd PJ, Kouzarides T and Zernicka-Goetz M 2003 Dynamic distribution of the replacement histone variant H3. 3 in the mouse oocyte and preimplantation embryos. Int. J. Dev. Biol. 50 455–461

    Google Scholar 

  • Valle-García D, Qadeer ZA, McHugh DS, Ghiraldini FG, Chowdhury AH, Hasson D, et al. 2016 ATRX binds to atypical chromatin domains at the 3′ exons of zinc finger genes to preserve H3K9me3 enrichment. Epigenetics 1–17

  • van der Heijden GW, Dieker JW, Derijck AAHA, Muller S, Berden JHM, Braat DDM, et al. 2005 Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech. Dev. 122 1008–1022

    Article  PubMed  CAS  Google Scholar 

  • Vogel MJ, Guele L, de Wit E, Hupkes DP, Lodén M, Talhout W, et al. 2006 Human heterochromatin proteins form large domains containing KRAB-ZNF genes. Genome Res. 16 1493–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voon HPJ and Wong LH 2016 New players in heterochromatin silencing: histone variant H3. 3 and the ATRX/DAXX chaperone. Nucleic Acids Res. 44 1496–1501

    Article  PubMed  PubMed Central  Google Scholar 

  • Voon HPJ, Hughes JR, Rode C, Inti A, Jenuwein T, Feil R, et al. 2015 ATRX plays a key role in maintaining silencing at interstitial heterochromatic loci and imprinted genes. Cell Rep. 11 405–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Ma A, C-m C, Horsley D, Brown NR, Cowell IG and Singh PB 2000 Conservation of heterochromatin protein 1 function. Mol. Cell. Biol. 20 6970–6983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei LH, Erlanger BE, Eastman EM, Miller OJ and Goodman R 1981 Inverse relationship between transcriptional activity and 5-methylcytosine content of DNA in polytene chromosomes of Sciara coprophila. Exp. Cell Res. 135 411–415

    Article  CAS  PubMed  Google Scholar 

  • Weiler KS and Wakimoto BT 1995 Heterochromatin and gene expression in Drosophila. Annu. Rev. Genet. 29 577–605

    Article  CAS  PubMed  Google Scholar 

  • White MJD 1954 Animal Cytology and Evolution 2nd ed. (London: Cambridge Univ. Press)

    Google Scholar 

  • Williamson CM, Blake A, Thomas S, Beechey CV, Hancock J, Cattanach BM and Peters J MRC Harwell; Oxfordshire: 2013. World Wide Web Site-Mouse Imprinting Data and References- http://www.har.mrc.ac.uk/research/genomic_imprinting

  • Wolf SF, Dintzis S, Toniol D, Persico G, Lunnen KD, Axelman J and Migeon BR 1984 Complete concordance between glucose-6-phosphate dehydrogenase activity and hypomethylation of 3′ CpG clusters: implications for X chromosome dosage compensation. Nucleic Acids Res. 12 9333–9348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong LH, McGhie JD, Sim M, Anderson MA, Ahn S, Hannan RD, et al. 2010 ATRX interacts with H3. 3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res. 20 351–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M, et al. 2011 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2 241

    Article  PubMed  CAS  Google Scholar 

  • Wreggett KA, Hill F, James PS, Hutchings A, Butcher GW and Singh PB 1994 A mammalian homologue of Drosophila heterochromatin protein 1 (HP1) is a component of constitutive heterochromatin. Cytogenet. Genome Res. 66 99–103

    Article  CAS  Google Scholar 

  • Wuite GJL, Smith SB, Young M, Keller D and Bustamante C 2000 Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature 404 103–106

  • Xu M, Long C, Chen X, Huang C, Chen S and Zhu B 2010 Partitioning of histone H3-H4 tetramers during DNA replication–dependent chromatin assembly. Science 328 94–98

  • Yang BX, Farran CAEL, Guo HC, Yu T, Fang HT, Wang HF, et al. 2015 Systematic identification of factors for provirus silencing in embryonic stem cells. Cell. 163 230–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yearim A, Gelfman S, Shayevitch R, Melcer S, Glaich O, Mallm J-P, et al. 2015 HP1 is involved in regulating the global impact of DNA methylation on alternative splicing. Cell Rep. 10 1122–1134

    Article  CAS  PubMed  Google Scholar 

  • Yunis JJ and Yasmineh WG 1971 Heterochromatin, satellite DNA, and cell function. Science 174 1200–1209

  • Zhang T, Termanis A, Özkan B, Bao XX, Culley J, de Lima AF, et al. 2016 G9a/GLP complex maintains imprinted DNA methylation in embryonic stem cells. Cell Rep. 15 77–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhang X and Firestein S 2007 Comparative genomics of odorant and pheromone receptor genes in rodents. Genomics 89 441–450

  • Zuo X, Sheng J, Lau H-T, McDonald CM, Andrade M, Cullen DE, et al. 2012 Zinc finger protein ZFP57 requires its co-factor to recruit DNA methyltransferases and maintains DNA methylation imprint in embryonic stem cells via its transcriptional repression domain. J. Biol. Chem. 287 2107–2118

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Dr William Swaney for helpful discussions, especially with regards to early drafts of the figures. Ashley Clarke drew the figures. I also thank Dr Vladimir Shetyn for his kindness in obtaining many references when I needed them. I am indebted to Prof H Sharat Chandra for his hospitality while on sabbatical at the Centre for Human Genetics, Bengaluru, India, where the seed for this review was planted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prim B Singh.

Additional information

Corresponding editor: SANJEEV KHOSLA

[Singh PB 2016 Heterochromatin and the molecular mechanisms of ‘parent-of-origin’ effects in animals. J. Biosci.]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.B. Heterochromatin and the molecular mechanisms of ‘parent-of-origin’ effects in animals. J Biosci 41, 759–786 (2016). https://doi.org/10.1007/s12038-016-9650-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-016-9650-9

Keywords

Navigation