Skip to main content
Log in

Genetic and biochemical evidences reveal novel insights into the mechanism underlying Saccharomyces cerevisiae Sae2-mediated abrogation of DNA replication stress

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

In Saccharomyces cerevisiae, the Mre11-Rad50-Xrs2 (MRX) protein complex plays pivotal roles in double-strand break (DSB) repair, replication stress and telomere length maintenance. Another protein linked to DSB repair is Sae2, which regulates MRX persistence at DSBs. However, very little is known about its role in DNA replication stress and repair. Here, we reveal a crucial role for Sae2 in DNA replication stress. We show that different mutant alleles of SAE2 cause hypersensitivity to genotoxic agents, and when combined with Δmre11 or nuclease-defective mre11 mutant alleles, the double mutants are considerably more sensitive suggesting that the sae2 mutations synergize with mre11 mutations. Biochemical studies demonstrate that Sae2 exists as a dimer in solution, associates preferentially with single-stranded and branched DNA structures, exhibits structure-specific endonuclease activity and cleaves these substrates from the 5′ end. Furthermore, we show that the nuclease activity is indeed intrinsic to Sae2. Interestingly, sae2G270D protein possesses DNA-binding activity, but lacks detectable nuclease activity. Altogether, our data suggest a direct role for Sae2 nuclease activity in processing of the DNA structures that arise during replication and DNA damage and provide insights into the mechanism underlying Mre11-Sae2-mediated abrogation of replication stress-related defects in S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Alani E, Padmore R and Kleckner N 1990 Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61 419–436

    Article  CAS  PubMed  Google Scholar 

  • Alcasabas AA, Osborn AJ, Bachant J, Hu F, Werler PJ, Bousset K, Furuya K, Diffley JF, et al. 2001 Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat. Cell Biol. 3 958–965

    Article  CAS  PubMed  Google Scholar 

  • Alvino GM, Collingwood D, Murphy JM, Delrow J, Brewer BJ and Raghuraman MK 2007 Replication in hydroxyurea: it's a matter of time. Mol. Cell Biol. 27 6396–6406

  • Baroni E, Viscardi V, Cartagena-Lirola H, Lucchini G and Longhese MP 2004 The functions of budding yeast Sae2 in the DNA damage response require Mec1- and Tel1-dependent phosphorylation. Mol. Cell Biol. 24 4151–4165

  • Bartek J, Lukas C and Lukas J 2004 Checking on DNA damage in S phase. Nat. Rev. Mol. Cell Biol. 5 792–804

    Article  CAS  PubMed  Google Scholar 

  • Bennett CB, Lewis AL, Baldwin KK and Resnick MA 1993 Lethality induced by a single site-specific double-strand break in a dispensable yeast plasmid. Proc. Natl. Acad. Sci. USA 90 5613–5617

  • Bennett CB, Lewis LK, Karthikeyan G, Lobachev KS, Jin YH, Sterling JF, Snipe JR and Resnick MA 2001 Genes required for ionizing radiation resistance in yeast. Nat. Genet. 29 426–434

    Article  CAS  PubMed  Google Scholar 

  • Bennett RJ, Sharp JA and Wang JC 1998 Purification and characterization of the Sgs1 DNA helicase activity of Saccharomyces cerevisiae. J. Biol. Chem. 273 9644–9650

    Article  CAS  PubMed  Google Scholar 

  • Bjergbaek L, Cobb JA, Tsai-Pflugfelder M and Gasser SM 2005 Mechanistically distinct roles for Sgs1p in checkpoint activation and replication fork maintenance. EMBO J. 24 405–417

    Article  CAS  PubMed  Google Scholar 

  • Bressan DA, Baxter BK and Petrini JH 1999 The Mre11-Rad50-Xrs2 protein complex facilitates homologous recombination-based double-strand break repair in Saccharomyces cerevisiae. Mol. Cell Biol. 19 7681–7687

  • Budd ME and Campbell JL 2009 Interplay of Mre11 nuclease with Dna2 plus Sgs1 in Rad51-dependent recombinational repair. PLoS One 4 e4267

    Article  PubMed  PubMed Central  Google Scholar 

  • Buis J, Wu Y, Deng Y, Leddon J, Westfield G, Eckersdorff M, Sekiguchi JM, Chang S, et al. 2008 Mre11 nuclease activity has essential roles in DNA repair and genomic stability distinct from ATM activation. Cell 135 85–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannavo E and Cejka P 2014 Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514 122–125

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Alani E and Kleckner N 1990 A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61 1089–1101

    Article  CAS  PubMed  Google Scholar 

  • Cartagena-Lirola H, Guerini I, Viscardi V, Lucchini G and Longhese MP 2006 Budding yeast Sae2 is an in vivo target of the Mec1 and Tel1 checkpoint kinases during meiosis. Cell Cycle 5 1549–1559

    Article  CAS  PubMed  Google Scholar 

  • Chang M, Bellaoui M, Boone C and Brown GW 2002 A genome-wide screen for methyl methanesulfonate-sensitive mutants reveals genes required for S phase progression in the presence of DNA damage. Proc. Natl. Acad. Sci. USA 99 16934–16939

  • Chen H, Donnianni RA, Handa N, Deng SK, Oh J, Timashev LA, Kowalczykowski SC and Symington LS 2015 Sae2 promotes DNA damage resistance by removing the Mre11-Rad50-Xrs2 complex from DNA and attenuating Rad53 signaling. Proc. Natl. Acad. Sci. USA 112 E1880–E1887

  • Ciccia A and Elledge SJ 2010 The DNA damage response: making it safe to play with knives. Mol. Cell 40 179–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clerici M, Mantiero D, Lucchini G and Longhese MP 2006 The Saccharomyces cerevisiae Sae2 protein negatively regulates DNA damage checkpoint signalling. EMBO Rep. 7 212–218

    Article  CAS  PubMed  Google Scholar 

  • Cobb JA, Bjergbaek L, Shimada K, Frei C and Gasser SM 2003 DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1. EMBO J. 22 4325–4336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobb JA, Schleker T, Rojas V, Bjergbaek L, Tercero JA and Gasser SM 2005 Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations. Genes Dev. 19 3055–3069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costanzo V 2011 Brca2, Rad51 and Mre11: performing balancing acts on replication forks. DNA Repair (Amst). 10 1060–1065

    Article  CAS  Google Scholar 

  • Crabbe L, Thomas A, Pantesco V, De Vos J, Pasero P and Lengronne A 2010 Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response. Nat. Struct. Mol. Biol. 17 1391–1397

    Article  CAS  PubMed  Google Scholar 

  • Daley JM, Niu H, Miller AS and Sung P 2015 Biochemical mechanism of DSB end resection and its regulation. DNA Repair (Amst). 32 66–74

    Article  CAS  Google Scholar 

  • D'Amours D and Jackson SP 2002 The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat. Rev. Mol. Cell Biol. 3 317–327

    Article  PubMed  Google Scholar 

  • Deng SK, Yin Y, Petes TD and Symington LS 2015 Mre11-Sae2 and RPA collaborate to prevent palindromic gene amplification. Mol. Cell 60 500–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desany BA, Alcasabas AA, Bachant JB and Elledge SJ 1998 Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. Genes Dev. 12 2956–2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong F, Allawi HT, Anderson T, Neri BP and Lyamichev VI 2001 Secondary structure prediction and structure-specific sequence analysis of single-stranded DNA. Nucleic Acids Res. 29 3248–3257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng W, Collingwood D, Boeck ME, Fox LA, Alvino GM, Fangman WL, Raghuraman MK and Brewer BJ 2006 Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication. Nat. Cell Biol. 8 148–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferretti LP, Lafranchi L and Sartori AA 2013 Controlling DNA-end resection: a new task for CDKs. Front. Genet. 4 99. doi:10.3389/fgene.2013.00099. eCollection 2013

    Article  PubMed  PubMed Central  Google Scholar 

  • Foster SS, Balestrini A and Petrini JH 2011 Functional interplay of the Mre11 nuclease and Ku in the response to replication-associated DNA damage. Mol. Cell Biol. 31 4379–4389

  • Fu Q, Chow J, Bernstein KA, Makharashvili N, Arora S, Lee CF, Person MD, Rothstein R, et al. 2014 Phosphorylation-regulated transitions in oligomeric state control the activity of the Sae2 DNA repair enzyme. Mol. Cell Biol. 34 778–793

  • Furuse M, Nagase Y, Tsubouchi H, Murakami-Murofushi K, Shibata T and Ohta K 1998 Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination. EMBO J. 17 6412–6425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallo-Fernandez M, Saugar I, Ortiz-Bazan MA, Vazquez MV and Tercero JA 2012 Cell cycle-dependent regulation of the nuclease activity of Mus81-Eme1/Mms4. Nucleic Acids Res. 40 8325–8335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia V, Phelps SE, Gray S and Neale MJ 2011 Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479 241–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghodke I and Muniyappa K 2013 Processing of DNA double-stranded breaks and intermediates of recombination and repair by Saccharomyces cerevisiae Mre11 and its stimulation by Rad50, Xrs2, and Sae2 proteins. J. Biol. Chem. 288 11273–11286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosal G and Muniyappa K 2005 Saccharomyces cerevisiae Mre11 is a high-affinity G4 DNA-binding protein and a G-rich DNA-specific endonuclease: implications for replication of telomeric DNA. Nucleic Acids Res. 33 4692–4703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosal G and Muniyappa K 2007 The characterization of Saccharomyces cerevisiae Mre11/Rad50/Xrs2 complex reveals that Rad50 negatively regulates Mre11 endonucleolytic but not the exonucleolytic activity. J. Mol. Biol. 372 864–882

    Article  CAS  PubMed  Google Scholar 

  • Gobbini E, Villa M, Gnugnoli M, Menin L, Clerici M and Longhese MP 2015 Sae2 function at DNA double-strand breaks is bypassed by dampening Tel1 or Rad53 activity. PLoS Genet. 11, e1005685

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorbsky GJ 2015 The spindle checkpoint and chromosome segregation in meiosis. FEBS J. 282 2471–2487

    Article  PubMed  Google Scholar 

  • Grabarz A, Barascu A, Guirouilh-Barbat J and Lopez BS 2012 Initiation of DNA double strand break repair: signaling and single-stranded resection dictate the choice between homologous recombination, non-homologous end-joining and alternative end-joining. Am. J. Cancer Res. 2 249–268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harju S, Fedosyuk H and Peterson KR 2004 Rapid isolation of yeast genomic DNA: Bust n' Grab. BMC Biotechnol. 4 8

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison JC and Haber JE 2006 Surviving the breakup: the DNA damage checkpoint. Annu. Rev. Genet. 40 209–235

    Article  CAS  PubMed  Google Scholar 

  • Hartman JL and Tippery NP 2004 Systematic quantification of gene interactions by phenotypic array analysis. Genome Biol. 5 R49

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashimoto Y, Puddu F and Costanzo V 2012 RAD51- and MRE11-dependent reassembly of uncoupled CMG helicase complex at collapsed replication forks. Nat. Struct. Mol. Biol. 19 17–24

    Article  CAS  Google Scholar 

  • Huertas P, Cortes-Ledesma F, Sartori AA, Aguilera A and Jackson SP 2008 CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature. 455 689–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov EL, Sugawara N, White CI, Fabre F and Haber JE 1994 Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 14 3414–3425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson SP and Bartek J 2009 The DNA-damage response in human biology and disease. Nature. 461 1071–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G, et al. 2004 A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast. 21 947–962

    Article  CAS  PubMed  Google Scholar 

  • Jimeno S, Fernandez-Avila MJ, Cruz-Garcia A, Cepeda-Garcia C, Gomez-Cabello D and Huertas P 2015 Neddylation inhibits CtIP-mediated resection and regulates DNA double strand break repair pathway choice. Nucleic Acids Res. 43 987–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karow JK, Constantinou A, Li JL, West SC and Hickson ID 2000 The Bloom's syndrome gene product promotes branch migration of Holliday junctions. Proc. Natl. Acad. Sci. USA 97 6504–6508

  • Katou Y, Kanoh Y, Bando M, Noguchi H, Tanaka H, Ashikari T, Sugimoto K and Shirahige K 2003 S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424 1078–1083

    Article  CAS  PubMed  Google Scholar 

  • Keeney S and Kleckner N 1995 Covalent protein-DNA complexes at the 5' strand termini of meiosis-specific double-strand breaks in yeast. Proc. Natl. Acad. Sci. USA 92 11274–11278

  • Khan K, Karthikeyan U, Li Y, Yan J and Muniyappa K 2012 Single-molecule DNA analysis reveals that yeast Hop1 protein promotes DNA folding and synapsis: implications for condensation of meiotic chromosomes. ACS Nano. 6 10658–10666

    CAS  PubMed  Google Scholar 

  • Khanduja JS and Muniyappa K 2012 Functional analysis of DNA replication fork reversal catalyzed by Mycobacterium tuberculosis RuvAB proteins. J. Biol. Chem. 287 1345–1360

    Article  CAS  PubMed  Google Scholar 

  • Klein HL and Kreuzer KN 2002 Replication, recombination, and repair: going for the gold. Mol. Cell 9 471–480

    Article  CAS  PubMed  Google Scholar 

  • Krakoff IH, Brown NC and Reichard P 1968 Inhibition of ribonucleoside diphosphate reductase by hydroxyurea. Cancer Res. 28 1559–1565

    CAS  PubMed  Google Scholar 

  • Krogh BO, Llorente B, Lam A and Symington LS 2005 Mutations in Mre11 phosphoesterase motif I that impair Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex stability in addition to nuclease activity. Genetics 171 1561–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K and Lee SE 2007 Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining. Genetics 176 2003–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lengsfeld BM, Rattray AJ, Bhaskara V, Ghirlando R and Paull TT 2007 Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. Mol. Cell 28 638–651

    CAS  Google Scholar 

  • Liang J, Suhandynata RT and Zhou H 2015 Phosphorylation of Sae2 mediates forkhead-associated (FHA) domain-specific interaction and regulates its DNA repair function. J. Biol. Chem. 290 10751–10763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liberi G, Maffioletti G, Lucca C, Chiolo I, Baryshnikova A, Cotta-Ramusino C, Lopes M, Pellicioli A, et al. 2005 Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev. 19 339–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisby M, Barlow JH, Burgess RC and Rothstein R 2004 Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118 699–713

    Article  CAS  PubMed  Google Scholar 

  • Lisby M and Rothstein R 2015 Cell biology of mitotic recombination. Cold Spring Harb. Perspect. Biol. 7 a016535

    Article  PubMed  Google Scholar 

  • Llorente B and Symington LS 2004 The Mre11 nuclease is not required for 5' to 3' resection at multiple HO-induced double-strand breaks. Mol. Cell Biol. 24 9682–9694

  • Lobachev KS, Gordenin DA and Resnick MA 2002 The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. Cell 108 183–193

    Article  CAS  PubMed  Google Scholar 

  • Lobachev KS, Stenger JE, Kozyreva OG, Jurka J, Gordenin DA and Resnick MA 2000 Inverted Alu repeats unstable in yeast are excluded from the human genome. EMBO J. 19 3822–3830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longhese MP, Bonetti D, Guerini I, Manfrini N and Clerici M 2009 DNA double-strand breaks in meiosis: checking their formation, processing and repair. DNA Repair (Amst). 8 1127–1138

    Article  CAS  Google Scholar 

  • Lopes M, Cotta-Ramusino C, Pellicioli A, Liberi G, Plevani P, Muzi-Falconi M, Newlon CS and Foiani M 2001 The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412 557–561

    Article  CAS  PubMed  Google Scholar 

  • Lucca C, Vanoli F, Cotta-Ramusino C, Pellicioli A, Liberi G, Haber J and Foiani M 2004 Checkpoint-mediated control of replisome-fork association and signalling in response to replication pausing. Oncogene 23 1206–1213

    Article  CAS  PubMed  Google Scholar 

  • Makharashvili N, Tubbs AT, Yang SH, Wang H, Barton O, Zhou Y, Deshpande RA, Lee JH, et al. 2014 Catalytic and noncatalytic roles of the CtIP endonuclease in double-strand break end resection. Mol. Cell 54 1022–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKee AH and Kleckner N 1997 A general method for identifying recessive diploid-specific mutations in Saccharomyces cerevisiae, its application to the isolation of mutants blocked at intermediate stages of meiotic prophase and characterization of a new gene SAE2. Genetics 146 797–816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mimitou EP and Symington LS 2011 DNA end resection--unraveling the tail. DNA Repair (Amst). 10 344–348

    Article  CAS  Google Scholar 

  • Moreau S, Ferguson JR and Symington LS 1999 The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol. Cell Biol. 19 556–566

  • Murina O, von Aesch C, Karakus U, Ferretti LP, Bolck HA, Hanggi K and Sartori AA 2014 FANCD2 and CtIP cooperate to repair dna interstrand crosslinks. Cell Rep. 7 1030–1038

    Article  CAS  PubMed  Google Scholar 

  • Nairz K and Klein F 1997 mre11S--a yeast mutation that blocks double-strand-break processing and permits nonhomologous synapsis in meiosis. Genes Dev. 11 2272–2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naylor ML, Li JM, Osborn AJ and Elledge SJ 2009 Mrc1 phosphorylation in response to DNA replication stress is required for Mec1 accumulation at the stalled fork. Proc. Natl. Acad. Sci. USA 106 12765–12770

  • Neelsen KJ and Lopes M 2015 Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat. Rev. Mol. Cell Biol. 16 207–220

    Article  CAS  PubMed  Google Scholar 

  • Osborn AJ and Elledge SJ 2003 Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev. 17 1755–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsons AB, Brost RL, Ding H, Li Z, Zhang C, Sheikh B, Brown GW, Kane PM, et al. 2004 Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat. Biotechnol. 22 62–69

    Article  CAS  PubMed  Google Scholar 

  • Polo SE and Jackson SP 2011 Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev. 25 409–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postow L, Ullsperger C, Keller RW, Bustamante C, Vologodskii AV and Cozzarelli NR 2001 Positive torsional strain causes the formation of a four-way junction at replication forks. J. Biol. Chem. 276 2790–2796

    Article  CAS  PubMed  Google Scholar 

  • Prinz S, Amon A and Klein F 1997 Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae. Genetics. 146 781–795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puddu F, Oelschlaegel T, Guerini I, Geisler NJ, Niu H, Herzog M, Salguero I, Ochoa-Montano B, et al. 2015 Synthetic viability genomic screening defines Sae2 function in DNA repair. EMBO J. 34 1509–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratcliff GC and Erie DA 2001 A novel single-molecule study to determine protein--protein association constants. J. Am. Chem. Soc. 123 5632–5635

    Article  CAS  PubMed  Google Scholar 

  • Rattray AJ, McGill CB, Shafer BK and Strathern JN 2001 Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/COM1. Genetics 158 109–122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Recolin B, van der Laan S, Tsanov N and Maiorano D 2014 Molecular mechanisms of DNA replication checkpoint activation. Genes (Basel). 5 147–175

    Google Scholar 

  • Robert T, Vanoli F, Chiolo I, Shubassi G, Bernstein KA, Rothstein R, Botrugno OA, Parazzoli D, et al. 2011 HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 471 74–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K and Linn S 2004 Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73 39–85

    Article  CAS  PubMed  Google Scholar 

  • Sarangi P, Steinacher R, Altmannova V, Fu Q, Paull TT, Krejci L, Whitby MC and Zhao X 2015 Sumoylation influences DNA break repair partly by increasing the solubility of a conserved end resection protein. PLoS Genet. 11, e1004899

    Article  PubMed  PubMed Central  Google Scholar 

  • Schiller CB, Seifert FU, Linke-Winnebeck C and Hopfner KP 2014 Structural studies of DNA end detection and resection in homologous recombination. Cold Spring Harb. Perspect. Biol. 6 a017962

    Article  PubMed  PubMed Central  Google Scholar 

  • Schlacher K, Wu H and Jasin M 2012 A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell. 22 106–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shim EY, Chung WH, Nicolette ML, Zhang Y, Davis M, Zhu Z, Paull TT, Ira G, et al. 2010 Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks. EMBO J. 29 3370–3380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiotani B, Nguyen HD, Hakansson P, Marechal A, Tse A, Tahara H and Zou L 2013 Two distinct modes of ATR activation orchestrated by Rad17 and Nbs1. Cell Rep. 3 1651–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slater ML 1973 Effect of reversible inhibition of deoxyribonucleic acid synthesis on the yeast cell cycle. J. Bacteriol. 113 263–270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sogo JM, Lopes M and Foiani M 2002 Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297 599–602

    Article  CAS  PubMed  Google Scholar 

  • Symington LS 2002 Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol. Mol. Biol. Rev. 66 630–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symington LS 2014 End resection at double-strand breaks: mechanism and regulation. Cold Spring Harb. Perspect. Biol. 6

  • Symington LS and Gautier J 2011 Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45 247–271

    Article  CAS  PubMed  Google Scholar 

  • Tay YD and Wu L 2010 Overlapping roles for Yen1 and Mus81 in cellular Holliday junction processing. J. Biol. Chem. 285 11427–11432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tercero JA, Longhese MP and Diffley JF 2003 A central role for DNA replication forks in checkpoint activation and response. Mol. Cell 11 1323–111336

    Article  CAS  PubMed  Google Scholar 

  • Thangavel S, Berti M, Levikova M, Pinto C, Gomathinayagam S, Vujanovic M, Zellweger R, Moore H, et al. 2015 DNA2 drives processing and restart of reversed replication forks in human cells. J. Cell Biol. 208 545–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tittel-Elmer M, Alabert C, Pasero P and Cobb JA 2009 The MRX complex stabilizes the replisome independently of the S phase checkpoint during replication stress. EMBO J. 28 1142–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi P, Anuradha S, Ghosal G and Muniyappa K 2006 Selective binding of meiosis-specific yeast Hop1 protein to the holliday junctions distorts the DNA structure and its implications for junction migration and resolution. J. Mol. Biol. 364 599–611

    Article  CAS  PubMed  Google Scholar 

  • Trujillo KM and Sung P 2001 DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50*Mre11 complex. J. Biol. Chem. 276 35458–35464

    Article  CAS  PubMed  Google Scholar 

  • Tsai AG and Lieber MR 2010 Mechanisms of chromosomal rearrangement in the human genome. BMC Genomics 11 S1. doi:10.1186/1471-2164-11-S1-S1

    Article  PubMed  PubMed Central  Google Scholar 

  • Usui T, Ohta T, Oshiumi H, Tomizawa J, Ogawa H and Ogawa T 1998 Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell 95 705–716

    Article  CAS  PubMed  Google Scholar 

  • Venturi CB, Erkine AM and Gross DS 2000 Cell cycle-dependent binding of yeast heat shock factor to nucleosomes. Mol. Cell Biol. 20 6435–6448

  • Weinert TA, Kiser GL and Hartwell LH 1994 Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev. 8 652–665

    Article  CAS  PubMed  Google Scholar 

  • West SC 1994 The processing of recombination intermediates: mechanistic insights from studies of bacterial proteins. Cell 76 9–15

    Article  CAS  PubMed  Google Scholar 

  • Woolstencroft RN, Beilharz TH, Cook MA, Preiss T, Durocher D and Tyers M 2006 Ccr4 contributes to tolerance of replication stress through control of CRT1 mRNA poly(A) tail length. J. Cell Sci. 119 5178–5192

    Article  CAS  PubMed  Google Scholar 

  • Yeo JE, Lee EH, Hendrickson EA and Sobeck A 2014 CtIP mediates replication fork recovery in a FANCD2-regulated manner. Hum. Mol. Genet. 23 3695–3705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakharyevich K 2010 Temporally and biochemically distinct activities of Exo1 during meiosis: double-strand break resection and resolution of double Holliday junctions. Mol. Cell 40 1001–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant and J. C. Bose National Fellowship from the Department of Science and Technology, New Delhi to K. M. and from the DBT-IISc Partnership program of the Department of Biotechnology, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Muniyappa.

Additional information

Corresponding editor: B Jagadeeshwar Rao

[Ghodke I and Muniyappa K 2016 Genetic and biochemical evidences reveal novel insights into the mechanism underlying Saccharomyces cerevisiae Sae2-mediated abrogation of DNA replication stress. J. Biosci.]

Supplementary materials pertaining to this article are available on the Journal of Biosciences Website.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2.21 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghodke, I., Muniyappa, K. Genetic and biochemical evidences reveal novel insights into the mechanism underlying Saccharomyces cerevisiae Sae2-mediated abrogation of DNA replication stress. J Biosci 41, 615–641 (2016). https://doi.org/10.1007/s12038-016-9642-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-016-9642-9

Keywords

Navigation