Skip to main content
Log in

Accelerated processing of solitary and clustered abasic site DNA damage lesions by APE1 in the presence of aqueous extract of Ganoderma lucidum

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The stimulatory effect of the aqueous extract of G. lucidum, a basidiomycetes class fungus in the APE1-enzyme-mediated processing of solitary and bistranded clustered abasic sites DNA damages is presented. Abasic sites are considered the most common type of DNA damage lesions. Our study shows enhanced activity of APE1 in the processing of abasic sites in the presence of the polysaccharides fraction of G. lucidum. Remarkable increase in the amount of single-strand breaks (SSBs) and double-strand breaks (DSBs) from solitary and bistranded clustered abasic sites respectively with APE1 in the presence of the extract was found. This trend is maintained when abasic sites in DNA oligomers are exposed to fibroblast cell extracts in the presence of the extract. While DNA conformational alteration is negligible, APE1 enzyme shows characteristic changes in the alpha helix and beta strand ratio after incubation with G. lucidum extract. The enhanced reactivity of APE1 at the molecular level in the presence of G. lucidium is attributed to this effect. This study potentially amplifies the scope of the use of G. lucidum, which was earlier shown to have only reactive oxygen species (ROS) scavenging properties with regards to DNA damage inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Reference

  • Adhikari S, Manthena PV, Kota KK, Karmahapatra SK, Roy G, Saxena R, Üren A and Roy R 2011 A comparative study of recombinant mouse and human apurinic/apyrimidinic endonuclease. Mol. Cell Biochem. 362 195–201

  • Berquist BR, McNeill DR and Wilson DM III 2008 Characterization of abasic endonuclease activity of human Ape1 on alternative substrates, as well as effects of ATP and sequence context on AP site incision. J. Mol. Biol. 379 17–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boiteux S and Guillet M 2004 Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae. DNA Repair 3 1–12

    Article  CAS  PubMed  Google Scholar 

  • Chan GC, Chan WK and Sze DM 2009 The effects of beta-glucan on human immune and cancer cells. J. Hematol. Oncol. 2 25

  • Chaudhry MA and Weinfeld M 1997 Reactivity of human apurinic/apyrimidinic endonuclease and Escherichia coli exonuclease III with bistranded abasic sites in DNA. J. Biol. Chem. 272 15650–15655

    Article  CAS  PubMed  Google Scholar 

  • Cheng KC, Huang HC, Chen JH, Hsu JW, Cheng HC, Ou CH, Yang WB, Chen ST, et al. 2007 Ganoderma lucidum polysaccharides in human monocytic leukemia cells: from gene expression to network construction. BMC Genomics 8 411–428

    Article  PubMed  PubMed Central  Google Scholar 

  • Das P, Bennett P and Sutherland B 2011 Processing of abasic DNA clusters in hAPEI-silenced primary fibroblasts exposed to low doses of X-irradiation. J. Biosci. 36 105–116

    Article  CAS  PubMed  Google Scholar 

  • Dong Q, Wang Y, Shi L, Yao J, Li J, Ma F and Ding K 2012 A novel water-soluble β-D-glucan isolated from the spores of Ganoderma lucidum. Carbohydr. Res. 353 100–105

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Tang W, Dai X, Gao H, Chen G, Ye J, Chan E, Koh HL, et al. 2005 Effects of water-soluble Ganoderma lucidum polysaccharides on the immune functions of patients with advanced lung cancer. J. Med. Food 8 159–168

    Article  CAS  PubMed  Google Scholar 

  • Georgakilas AG, Bennett PV, Wilson DM III and Sutherland BM 2004 Processing of bistranded abasic DNA clusters in γ-irradiated human hematopoietic cells. Nucleic Acids Res. 32 5609–5620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamman JH 2008 Composition and applications of Aloe vera leaf gel. Molecules 13 1599–1616

    Article  CAS  PubMed  Google Scholar 

  • Houllier GE, Marchais SE, Gasparutto D and Sage E 2005 Processing of a complex multiply damaged DNA site by human cell extracts and purified repair proteins. Nucleic Acids Res. 33 260–271

    Article  Google Scholar 

  • Hu H, Ahn NS, Yang X, Lee YS and Kang KS 2002 Ganoderma lucidum extract induces cell cycle arrest and apoptosis in mcf-7 human breast cancer cell. Int. J. Cancer 102 250–253

    Article  CAS  PubMed  Google Scholar 

  • Jang KJ, Han MH, Lee BH, Kim BW, Kim CH, Yoon HM and Choi YH 2010 Induction of apoptosis by ethanol extracts of Ganoderma lucidum in human gastric carcinoma cells. J. Acupunct. Meridian Stud. 3 24–31

    Article  PubMed  Google Scholar 

  • Kaluarachchik K and Bush CA 1989 Determination of the absolute configuration of the sugar residues of complex polysaccharides by circular dichroism spectroscopy. Anal. Biochem. 179 209–215

    Article  Google Scholar 

  • Kim KC and Kim IG 1999 Ganoderma lucidum extract protects DNA from strand breakage caused by hydroxyl radical and UV irradiation. Int. J. Mol. Med. 4 273–277

    CAS  PubMed  Google Scholar 

  • Krokan HE, Nilsen H, Skorpen F, Otterlei M and Slupphaug G 2000 Base excision repair of DNA in mammalian cells. FEBS Lett. 476 73–77

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, Yi Y, Guo Y, Wang R, Hu Q and Xiong X 2014 Chemical characterization and antitumor activities of polysaccharide extracted from Ganoderma lucidum. Int. J. Mol. Sci. 115 9103–9115

    Article  Google Scholar 

  • Lindhal T 1993 Instability and decay of the primary structure of DNA. Nature 362 709–715

    Article  Google Scholar 

  • Liu LY, Chen H, Liu C, Wang HQ, Kang J, Li Y and Chen RY 2014 Triterpenoids of Ganoderma theaecolum and their hepatoprotective activities. Fitoterapia 98 254–259

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga Y, Machmudah S, Wahyudiono KH, Sasaki M and Goto M 2014 Subcritical water extraction and direct formation of microparticulate polysaccharide powders from Ganoderma lucidum. Int. J. Technol. 1 40–50

    Article  Google Scholar 

  • Müller CI, Kumagai T, O'Kelly J, Seeram NP, Heber D and Koeffler HP 2006 Ganoderma lucidum causes apoptosis in leukemia, lymphoma and multiple myeloma cells. Leuk. Res. 30 841–848

    Article  PubMed  Google Scholar 

  • Naidu MD, Agarwal R, Pena LA, Cunha L, Mezei M, Shen M, Wilson III DM, Liu Y, et al. 2011 Lucanthone and its derivative Hycanthone inhibit Apurinic Endonuclease-1 (APE1) by direct protein binding. PLoS One. 6 doi:10.1371/journal.pone.0023679

  • Paap B, Wilson DM and Sutherland BM 2008 Human abasic endonuclease action on multilesion abasic clusters: implications for radiation-induced biological damage. Nucleic Acids Res. 36 2717–2727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan D, Wang L, Chen C, Teng B, Wang C, Xu Z, Hu B and Zhou P 2012 Structure characterization of a novel neutral polysaccharide isolated from Ganoderma lucidum fruiting bodies. Food Chem. 135 1097–1103

    Article  CAS  PubMed  Google Scholar 

  • Park YK, Lee HB, Jeona E-J, Jung HS and Kanga M-H 2004 Chaga mushroom extract inhibits oxidative DNA damage in human lymphocytes as assessed by comet assay. Biofactors 21 109–112

    Article  CAS  PubMed  Google Scholar 

  • Patel S and Goyal A 2012 Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech. 2 1–15

    Article  PubMed  Google Scholar 

  • Pero RW, Amiri A, Sheng Y, Welther M and Rich M 2005 Formulation and in vitro/in vivo evaluation of combining DNA repair and immune enhancing nutritional supplements. Phytomedicine 12 255–263

    Article  CAS  PubMed  Google Scholar 

  • Pillai TG, Nair CKK and Janardhanan KK 2010 Enhancement of repair of radiation induced DNA strand breaks in human cells by Ganoderma mushroom polysaccharides. Food Chem. 119 1040–1043

    Article  CAS  Google Scholar 

  • Powell AK, Yates EA, Fernig DG and Turnbull JE 2004 Interactions of heparin/heparan sulfate with proteins: appraisal of structural factors and experimental approaches. Glycobiology 14 17R–30R

    Article  CAS  PubMed  Google Scholar 

  • Russell R and Paterson M 2006 Ganoderma – a therapeutic fungal biofactory. Phytochemistry 67 1985–2001

    Article  Google Scholar 

  • Shi M, Yang Y, Hu X and Zhang Z 2014 Effect of ultrasonic extraction conditions on antioxidative and immunomodulatory activities of a Ganoderma lucidum polysaccharide originated from fermented soybean curd residue. Food Chem. 155 50–56

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Kumari B and Das P 2015 Repair efficiency of clustered abasic sites by APE1 in nucleosome core particles is sequence and position dependent. RSC Adv. 55 23691–23698

    Article  Google Scholar 

  • Srivastava DK, Berg BJV, Prasad R, Molina JT, Beard WA, Tomkinson AE and Wilson SH 1998 Mammalian abasic site base excision repair: identification of the reaction sequence and rate-determining steps. J. Biol. Chem. 273 21203–21209

    Article  CAS  PubMed  Google Scholar 

  • Sukhanova MV, Khodyreva SN, Lebedeva NA, Prasad R, Wilson SH and Lavrik OI 2005 Human base excision repair enzymes apurinic/apyrimidinic endonuclease1 (APE1), DNA polymerase β and poly (ADP-ribose) polymerase 1: interplay between strand-displacement DNA synthesis and proofreading exonuclease activity. Nucleic Acids Res. 33 1222–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland BM, Bennett PV, Sidorkina O and Laval J 2000a Clustered damages and total lesions induced in DNA by ionizing radiation: oxidized bases and strand breaks. Biochemistry 39 8026–8031

    Article  CAS  PubMed  Google Scholar 

  • Sutherland BM, Bennett PV, Sidorkina O and Laval J 2000b Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation. Proc. Natl. Acad. Sci. USA. 97 103–108

  • Teng BS, Wang CD, Zhang D, Wu JS, Pan D, Pan LF, Yang HJ and Zhou P 2012 Hypoglycemic effect and mechanism of a proteoglycan from ganoderma lucidum on streptozotocin-induced type 2 diabetic rats. Eur. Rev. Med. Pharmacol. Sci. 16 166–175

    CAS  PubMed  Google Scholar 

  • Vidal AE, Boiteux S, Hickson ID and Radicella JP 2001 XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein–protein interactions. EMBO J. 20 6530–6539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhang L, Yu Y and Cheung PC 2009 Enhancement in antitumor activities in sulphated and carbomethylated polysaccharides in Ganoderma lucidum. J. Agric. Food Chem. 57 10565–10572

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Ma Z, Zhang L, Fang Y, Jiang F and Phillips GO 2011 Structure and chain conformation of water-soluble heteropolysaccharides from Ganoderma lucidum. Carbohydr. Polym. 86 844–851

    Article  CAS  Google Scholar 

  • Wilson DM III and Barsky D 2001 The major human abasic endonuclease: formation, consequences and repair of abasic lesions in DNA. Mutat. Res. 485 283–307

    Article  CAS  PubMed  Google Scholar 

  • XiaoPing C, Yan C, ShuiBing L, YouGuo C, JianYun L and LanPing L 2009 Free radical scavenging of Ganoderma lucidum polysaccharides and its effect on antioxidant enzymes and immunity activities in cervical carcinoma rats. Carbohydr. Polym. 77 389–393

    Article  Google Scholar 

  • Xu Z, Chen X, Zhong Z, Chen L and Wang Y 2011 Ganoderma lucidum polysaccharides: immunomodulation and potential anti-tumor activities. Am. J. Chin. Med. 39 15–27

    Article  PubMed  Google Scholar 

  • Yuen JW, Gohel MD and Au DW 2008 Telomerase associated apoptotic events by mushroom - Ganoderma lucidum on pre-malignant human urothelial cells. Nutr. Cancer 60 109–119

    Article  PubMed  Google Scholar 

  • Zhang GL, Wang YH, Ni W, Teng HL and Lin ZB 2002 Hepatoprotective role of Ganoderma lucidum polysaccharide against BCG-induced immune liver injury in mice. World J. Gastroenterol 8 728–733

Download references

Acknowledgements

This work was supported by a grant from Department of Science and Technology, India (SERB, grant no SR/FT/LS-36/2010) to PD. BK is thankful to IIT Patna for fellowship. The author gratefully acknowledges the availability of Infrastructural and experimental facilities provided by IIT Patna. The author declares no conflict of interest. The author also acknowledges IIT BHU for analytical facilities and NIPER, Hajipur, for the gift of cultured fibroblast cells.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prolay Das or Rekha Kumari.

Additional information

[Kumari B, Das P and Kumari R 2016 Accelerated processing of solitary and clustered abasic site DNA damage lesions by APE1 in the presence of aqueous extract of Ganoderma lucidum. J. Biosci.] DOI 10.1007/s12038-016-9614-0

Supplementary materials pertaining to this article are available on the Journal of Biosciences Website.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2.92 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, B., Das, P. & Kumari, R. Accelerated processing of solitary and clustered abasic site DNA damage lesions by APE1 in the presence of aqueous extract of Ganoderma lucidum . J Biosci 41, 265–275 (2016). https://doi.org/10.1007/s12038-016-9614-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-016-9614-0

Keywords

Navigation