Skip to main content

Advertisement

Log in

Transcriptome analysis of stem wood of Nothapodytes nimmoniana (Graham) Mabb. identifies genes associated with biosynthesis of camptothecin, an anti-carcinogenic molecule

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Camptothecin (CPT), a monoterpene indole alkaloid, is a potent inhibitor of DNA topoisomerase I and has applications in treating ovarian, small lung and refractory ovarian cancers. Stem wood tissue of Nothapodytes nimmoniana (Graham) Mabb. (family Icacinaceae) is one of the richest sources of CPT. Since there is no genomic or transcriptome data available for the species, the present work sequenced and analysed transcriptome of stem wood tissue on an Illumina platform. From a total of 77,55,978 reads, 9,187 transcripts were assembled with an average length of 255 bp. Functional annotation and categorization of these assembled transcripts unraveled the transcriptome architecture and also a total of 13 genes associated with CPT biosynthetic pathway were identified in the stem wood tissue. Four genes of the pathway were cloned to full length by RACE to validate the transcriptome data. Expression analysis of 13 genes associated with CPT biosynthetic pathway in 11 different tissues vis-à-vis CPT content analysis suggested an important role of NnPG10H, NnPSLS and NnPSTR genes in the biosynthesis of CPT. These results indicated that CPT might be synthesized in the leaves and then perhaps exported to stem wood tissue for storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aimi N, Masashi N, Akiko M, Hiroyuki H, Shin-ichiro S and Joju H 1989 Pumiloside and deoxypumiloside: plausible intermediates of camptothecin biosynthesis. Tetrahedron Lett. 30 4991–4994

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW and Lipman DJ 1990 Basic local alignment search tool. J. Mol. Biol. 215 403–410

    Article  CAS  PubMed  Google Scholar 

  • Argelia L and Craig LN 2004 Camptothecin, over four decades of surprising findings. Phytochemistry 65 2735–2749

    Article  Google Scholar 

  • Arisawa M, Gunasekera SP, Cordell GA and Farnsworth NR 1981 Plant anticancer agents XXI. Constituents of Merrilliodendron megacarpum. Planta Med. 43 404–407

    Article  CAS  PubMed  Google Scholar 

  • Aron MB, Shennan L, John B, Anderson FC, Myra KD, Carol DS, Jessica HF, et al. 2011 CDD: a Conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 39 225–229

    Article  Google Scholar 

  • Barleben L, Panjikar S, Ruppert M, Koepke J and Stöckigt J 2007 Molecular architecture of strictosidine glucosidase: the gateway to the biosynthesis of the monoterpenoid indole alkaloid family. Plant Cell. 19 2886–2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnett RJ, Maldonado-Mendoza IE, McKnight TD and Nessler CL 1994 Expression of a 3-Hydroxy-3-Methylglutaryl coenzyme a reductase gene from Camptotheca acuminata is differentially regulated by wounding and methyl jasmonate. Plant Physiol. 103 41–48

    Article  Google Scholar 

  • Coon MJ 2005 Cytochrome P450: nature’s most versatile biological catalyst. Annu. Rev. Pharmacol. 45 1–25

    Article  CAS  Google Scholar 

  • Cordell GA 1974 The biosynthesis of indole alkaloids. Lloydia. 37 219–298

    CAS  PubMed  Google Scholar 

  • Eisenreich W, Bacher A, Arigoni D and Rohdich F 2004 Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell. Mol. Life Sci. 61 1401–1426

    Article  CAS  PubMed  Google Scholar 

  • Gahlan P, Singh HR, Shankar R, Sharma N, Kumari A, Vandna C, Paramvir SA and Sanjay K 2012 De novo sequencing and characterization of Picrorhiza kurrooa transcriptome at two temperatures showed major transcriptome adjustments. BMC Genomics 13 126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghawana S, Paul A, Kumar H, Kumar A, Singh H, Pardeep KB, Arti R, Ravi SS, et al. 2011 An RNA isolation system for plant tissues rich in secondary metabolites. BMC. Res. Notes 4 85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunasekera SP, Badawi MM, Cordell GA, Farnsworth NR and Chitnis M 1979 Plant anticancer agents X. Isolation of camptothecin and 9-methoxycamptothecin from Ervatamia heyneana. J. Nat. Prod. 42 475–477

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG 1999 Plant protein serine/threonine kinases: classification and functions. Annu. Rev. Plant Physiol. 50 97–131

    Article  CAS  Google Scholar 

  • Hiratsu K, Matsui K, Koyama T and Ohme-Takagi M 2003 Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J. 5 733–739

    Article  Google Scholar 

  • Hsiang YH, Hertzberg R, Hecht S and Liu LF 1985 Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem. 260 14873–14878

    CAS  PubMed  Google Scholar 

  • Huang FC, Sung PH, Do YY and Huang PL 2012 Differential expression and functional characterization of the NADPH cytochrome P450 reductase genes from Nothapodytes foetida. Plant Sci. 190 16–23

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson CR, Heckendorf AH, Straughn JL, Daddona PE and Cane DE 1979 Biosynthesis of camptothecin: III. Definition of strictosamide as the penultimate biosynthetic precursor assisted by carbon-13 and deuterium NMR spectroscopy. J. Am. Chem. Soc. 101 3358–3369

    Article  CAS  Google Scholar 

  • Keat H T, Elizabeth G and McKnight T D 2000 Characterization and cloning of 10- hydroxyl geraniol oxidoreductase. Plant Biol. (rockville) 71

  • Ketudat CJR and Esen A 2010 β-Glucosidases. Cell. Mol. Life. Sci. 67 3389–3405

  • Kumari A, Heikham RS, Ashwani J, Mohit KS, Shankar R and Kumar S 2014 Transcriptome sequencing of rhizome tissue of Sinopodophyllum hexandrum at two temperatures. BMC Genomics 15 871

    Article  PubMed  PubMed Central  Google Scholar 

  • Kutchan TM, Hampp N, Lottspeich F and Beyreuther K 1988 The cDNA clone for strictosidine synthase from Rauvolfia serpentina: DNA sequence determination and expression in Escherichia coli. FEBS Lett. 237 40–44

    Article  CAS  PubMed  Google Scholar 

  • Li W and Godzik A 2006 Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22 1658–1659

    Article  CAS  PubMed  Google Scholar 

  • Li W, Jaroszewsk L and Godzik A 2002 Sequence clustering strategies improve remote homology recognitions while reducing search times. Protein Eng. 15 643–649

    Article  CAS  PubMed  Google Scholar 

  • Li R, Zhu H, Ruan J, Qian W, Fang X, Zhongbin S, Yingrui L, Shengting L, et al. 2010 De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20 265–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-M M and Nessler CL 1997 Tryptophan decarboxylase is encoded by two autonomously regulated genes in Camptotheca acuminata which are differentially expressed during development and stress. Plant J. 11 1167–1175

    Article  Google Scholar 

  • Lu H and McKnight TD 1999 Tissue-specific expression of the β-subunit of tryptophan synthase in Camptotheca acuminata, an indole alkaloid producing plant. Plant Physiol. 120 43–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKnight TD, Roessner CA, Devagupta R, Scott A and Nessler CL 1990 Nucleotide sequence of a cDNA encoding the vacuolar protein strictosidine synthase from Catharanthus roseus. Nucleic Acids Res. 16 4939

    Article  Google Scholar 

  • Menke FLH, Champion A, Kijne JW and Memelink J 1999 A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor- inducible AP2-domain transcription factor, ORCA2. EMBO J. 18 4455–4463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michael W, Graham W and Dempfle L 2002 Relative Expression Software Tool (REST©) for group wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30 36

    Article  Google Scholar 

  • Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J, Woittiez L, van der Krol S, et al. 2014 The seco-iridoid pathway from Catharanthus roseus. Nat. Commun. 5 3606

    PubMed  PubMed Central  Google Scholar 

  • Morant M, Bak S, Moller BL and Werck-Reichhart D 2003 Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr. Opin. Biotechnol. 14 151–162

    Article  CAS  PubMed  Google Scholar 

  • Nomura T, Quesada AL and Kutchan TM 2008 The new β-D-glucosidase in terpenoid-isoquinoline alkaloid biosynthesis in Psychotria ipecacuanha. J. Biol. Chem. 283 34650–34659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor SE and Maresh JJ 2006 Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat. Prod. Rep. 23 532–547

    Article  PubMed  Google Scholar 

  • Oberlies NH and Kroll DJ 2004 Camptothecin and taxol: historic achievements in natural products research. J. Nat. Prod. 67 129–135

    Article  CAS  PubMed  Google Scholar 

  • Ohta M, Matsui K, Hiratsu K, Shinshi H and Ohme-Takagi M 2001 Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell. 13 1959–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauw B, Hilliou FA, Martin VS, Chatel G, Wolf CJ, Champion A, Pré M, Van DB, et al. 2004 Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus. J. Biol. Chem. 279 52940–52948

    Article  CAS  PubMed  Google Scholar 

  • Pertea G, Huang X, Lian F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, et al. 2003 TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics. 19 651–652

    Article  CAS  PubMed  Google Scholar 

  • Ramesha BT, Amna T, Ravikanth G, Gunaga RP, Vasudeva R, Ganeshaiah KN, Uma Shaanker R, Khajuria RK, et al. 2008 Prospecting for Camptothecines from Nothapodytes nimmoniana in the Western Ghats, South India: identification of high-yielding sources of camptothecin and new families of camptothecines. J. Chromatogr. Sci. 46 362–368

    Article  CAS  PubMed  Google Scholar 

  • Ramesha BT, Suma HK, Senthilkumar U, Priti V, Ravikanth G, Vasudeva R, Kumar TR, Ganeshaiah KN, et al. 2013 New plant sources of the anti-cancer alkaloid, camptothecine from the Icacinaceae taxa, India. Phytomedicin. 20 521–527

    Article  CAS  Google Scholar 

  • Riki K and Julia BS 2005 mRNA sequence features that contribute to translational regulation in Arabidopsis. Nucleic Acids Res. 33 955–965

    Article  Google Scholar 

  • Sakai K, Shitan N, Sato F, Ueda K and Yazaki K 2002 Characterization of berberine transport into Coptis japonica cells and the involvement of ABC protein. J. Exp. Bot. 53 1879–1886

    Article  CAS  PubMed  Google Scholar 

  • Samira M, Vincent B and Benoit SP 2007 Cellular and sub-cellular organisation of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. Phytochem. Rev. 6 363–381

    Article  Google Scholar 

  • Samuelsson G 1999 Drugs of natural origin: a textbook of pharmacognosy 4th ed. (Stockholm: Pharmaceutical Press)

    Google Scholar 

  • Schmid R and Blaxter ML 2008 annot8r: GO, EC and KEGG annotation of EST datasets. BMC Bioinf. 9 180

    Article  Google Scholar 

  • Shitan N, Bazin I, Dan K, Obata K, Kigawa K, Ueda K, Sato F, Forestier C, et al. 2003 Involvement of CjMDR1, a plant MDR-type ABC protein, in alkaloid transport in Coptis japonica. Proc. Natl. Acad. Sci. USA 100 751–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh K, Raizada J, Bhardwaj P, Ghawana S, Rani A, Singh H, Kaul K and Kumar S 2004 26S rRNA-based internal control gene primer pair for reverse transcription-polymerase chain reaction-based quantitative expression studies in diverse plant species. Anal. Biochem. 335 330–333

    Article  CAS  PubMed  Google Scholar 

  • Sirikantaramas S, Arthitaya M, Thanyada R, Hideyoshi F, Tyuji H, Hiroshi S, Mami Y and Kazuki Saito 2015 Structural insight of DNA topoisomerases I from camptothecinproducing plants revealed by molecular dynamics simulations. Phytochemistry (article in press)

  • Stockigt J and Ruppert M 1999 Strictosidine: the biosynthetic key to monoterpenoid indole alkaloids; in: Comprehensive natural products chemistry: amino acids, peptides, porphyrins and alkaloid (eds) DHR Barton, K Nakanishi, O Meth-Cohn and JW Kelly (Amsterdam: Elsevier) 4 pp 109–138

  • Suhas S, Ramesha BT, Ravikanth G, Gunaga Rajesh P, Vasudeva R, Ganeshaiah KN and Uma Shaanker R 2007 Chemical profiling of Nothapodytes nimmoniana populations in the Western Ghats, India for anti-cancer compound, camptothecin. Curr. Sci. 92 1142–1147

    CAS  Google Scholar 

  • Tafur S, Nelson JD, DeLong DC and Svoboda GH 1976 Antiviral components of Ophiorrhiza mungos. Isolation of camptothecin and 10-methoxycamptothecin. Lloydia. 39 261–262

    CAS  PubMed  Google Scholar 

  • Terasaka K, Sakai K, Sato F, Yamamoto H and Yazaki K 2003 Thalictrum minus cell cultures and ABC-transporter. Phytochemistry. 62 483–489

    Article  CAS  PubMed  Google Scholar 

  • Uma Shaanker R, Ramesha BT, Ravikanth G, Gunaga R, Vasudeva R and Ganeshaiah KN 2008 Chemical profiling of Nothapodytes nimmoniana for camptothecin, an important anticancer alkaloid: toward the development of a sustainable production system; in Bioactive molecules and medicinal plants (eds) KG Ramawat and JM Merillon (UK: Springer Publishing) pp 197–213

    Chapter  Google Scholar 

  • Van der Fit L and Memelink J 2000 ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289 95–297

    Google Scholar 

  • Vinogradov AE 2003 DNA helix: the importance of being GC-rich. Nucleic Acids Res. 31 838–1844

    Google Scholar 

  • Wall ME, Wani MC, Cook CE, Palmer KH, Mcphail AT and Sim GA 1966 Plant antitumor agents I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibition from Camptotheca acuminate. J. Am. Chem. Soc. 88 3888–3890

    Article  CAS  Google Scholar 

  • Warzechaa H, Gerasimenkoa I, Kutchan TM and Stöckigt J 2000 Molecular cloning and functional bacterial expression of a plant glucosidase specifically involved in alkaloid biosynthesis. Phytochemistry 54 657–666

    Article  Google Scholar 

  • Yamazaki Y, Urano A, Sudo H, Kitajima M, Takayama H, Yamazaki M, Aimi N and Saito K 2003 Metabolite profiling of alkaloids and strictosidine synthase activity in camptothecin producing plants. Phytochemistry. 62 461–470

    Article  CAS  PubMed  Google Scholar 

  • Yao H, Gong Y, Zuo K, Ling H, Qiu C, Zhang F, Wang Y, Pi Y, et al. 2008 Molecular cloning, expression profiling and functional analysis of a DXR gene encoding 1-deoxy-d-xylulose 5-phosphate reductoisomerase from Camptotheca acuminate. J. Plant Physiol. 165 203–213

    Article  CAS  PubMed  Google Scholar 

  • Yu F and De Luca V 2013 An ABC transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. Proc. Natl. Acad. Sci. 110 15830–15835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work reported here has been facilitated by grants from the Department of Biotechnology, New Delhi, India, and collaboration between the CSIR–Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India, and the University of Agricultural Sciences, Bangalore, India. The authors thank the Director CSIR-IHBT for providing necessary facilities for carrying out transcriptome sequencing, bioinformatics analyses, and gene cloning work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B L Manjunatha.

Additional information

Corresponding editor: Utpal Nath

[Manjunatha BL, Singh HR, Ravikanth G, Nataraja KN, Shankar R, Kumar S and Shaanker RU 2016 Transcriptome analysis of stem wood of Nothapodytes nimmoniana (Graham) Mabb. identifies genes associated with biosynthesis of camptothecin, an anti-carcinogenic molecule. J. Biosci.] DOI 10.1007/s12038-016-9591-3

Supplementary materials pertaining to this article are available on the Journal of Biosciences Website.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 544 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjunatha, B.L., Singh, H.R., Ravikanth, G. et al. Transcriptome analysis of stem wood of Nothapodytes nimmoniana (Graham) Mabb. identifies genes associated with biosynthesis of camptothecin, an anti-carcinogenic molecule. J Biosci 41, 119–131 (2016). https://doi.org/10.1007/s12038-016-9591-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-016-9591-3

Keywords

Navigation