Skip to main content
Log in

Potential gene regulatory role for cyclin D3 in muscle cells

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Cyclin D3 is important for muscle development and regeneration, and is involved in post-mitotic arrest of muscle cells. Cyclin D3 also has cell-cycle-independent functions such as regulation of specific genes in other tissues. Ectopic expression of cyclin D3 in myoblasts, where it is normally undetectable, promotes muscle gene expression and faster differentiation kinetics upon serum depletion. In the present study, we investigated the mechanistic role of cyclin D3 in muscle gene regulation. We initially showed by mutational analysis that a stable and functional cyclin D3 was required for promoting muscle differentiation. Using chromatin immunoprecipitation assays, we demonstrated that expression of cyclin D3 in undifferentiated myoblasts altered histone epigenetic marks at promoters of muscle-specific genes like MyoD, Pax7, myogenin and muscle creatine kinase but not non-muscle genes. Cyclin D3 expression also reduced the mRNA levels of certain epigenetic modifier genes. Our data suggest that epigenetic modulation of muscle-specific genes in cyclin-D3-expressing myoblasts may be responsible for faster differentiation kinetics upon serum depletion. Our results have implications for a regulatory role for cyclin D3 in muscle-specific gene activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Andres V and Walsh K 1996 Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. J. Cell Biol. 132 657–666

    Article  CAS  PubMed  Google Scholar 

  • Arnold HH and Braun T 1996 Targeted inactivation of myogenic factor genes reveals their role during mouse myogenesis: a review. Int. J. Dev. Biol. 40 345–353

    CAS  PubMed  Google Scholar 

  • Asp P, Blum R, Vethantham V, Parisi F, Micsinai M, Cheng J, Bowman C, Kluger Y, et al. 2011 Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proc. Natl. Acad. Sci. USA 108 E149–158

    Article  PubMed Central  PubMed  Google Scholar 

  • Baker GL, Landis MW and Hinds PW 2005 Multiple functions of D-type cyclins can antagonize pRb-mediated suppression of proliferation. Cell Cycle 4 330–338

    Article  CAS  PubMed  Google Scholar 

  • Barrand S and Collas P 2009 Chromatin states of core pluripotency-associated genes in pluripotent, multipotent and differentiated cells. Biochem. Biophys. Res. Commun. 391 762–767

    Article  PubMed  Google Scholar 

  • Bartkova J, Lukas J, Strauss M and Bartek J 1998 Cyclin D3: requirement for G1/S transition and high abundance in quiescent tissues suggest a dual role in proliferation and differentiation. Oncogene 17 1027–1037

    Article  CAS  PubMed  Google Scholar 

  • Blais A, van Oevelen CJ, Margueron R, Acosta-Alvear D and Dynlacht BD 2007 Retinoblastoma tumor suppressor protein-dependent methylation of histone H3 lysine 27 is associated with irreversible cell cycle exit. J. Cell Biol. 179 1399–1412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao R and Zhang Y 2004 The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr. Opin. Genet. Dev. 14 155–164

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Yao Z, Sarkar D, Lawrence M, Sanchez GJ, Parker MH, MacQuarrie KL, Davison J, et al. 2010 Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming. Dev. Cell. 18 662–674

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caretti G, Di Padova M, Micales B, Lyons GE and Sartorelli V 2004 The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev. 18 2627–2638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cenciarelli C, De Santa F, Puri PL, Mattei E, Ricci L, Bucci F, Felsani A and Caruso M 1999 Critical role played by cyclin D3 in the MyoD-mediated arrest of cell cycle during myoblast differentiation. Mol. Cell. Biol. 19 5203–5217

    PubMed Central  CAS  PubMed  Google Scholar 

  • Das PP, Shao Z, Beyaz S, Apostolou E, Pinello L, De Los AA, O'Brien K, Atsma JM, et al. 2013 Distinct and combinatorial functions of Jmjd2b/Kdm4b and Jmjd2c/Kdm4c in mouse embryonic stem cell identity. Mol. Cell. 53 32–48

    Article  PubMed Central  PubMed  Google Scholar 

  • De Luca G, Ferretti R, Bruschi M, Mezzaroma E and Caruso M 2013 Cyclin D3 critically regulates the balance between self-renewal and differentiation in skeletal muscle stem cells. Stem Cells 31 2478–2491

    Article  PubMed Central  PubMed  Google Scholar 

  • De Santa F, Albini S, Mezzaroma E, Baron L, Felsani A and Caruso M 2007 pRb-dependent cyclin D3 protein stabilization is required for myogenic differentiation. Mol. Cell. Biol. 27 7248–7265

    Article  PubMed Central  PubMed  Google Scholar 

  • Despouy G, Bastie JN, Deshaies S, Balitrand N, Mazharian A, Rochette-Egly C, Chomienne C and Delva L 2003 Cyclin D3 is a cofactor of retinoic acid receptors, modulating their activity in the presence of cellular retinoic acid-binding protein II. J. Biol. Chem. 278 6355–6362

    Article  CAS  PubMed  Google Scholar 

  • Favreau C, Delbarre E, Courvalin JC and Buendia B 2008 Differentiation of C2C12 myoblasts expressing lamin A mutated at a site responsible for Emery-Dreifuss muscular dystrophy is improved by inhibition of the MEK-ERK pathway and stimulation of the PI3-kinase pathway. Exp. Cell Res. 314 1392–1405

    Article  CAS  PubMed  Google Scholar 

  • Gurung R and Parnaik VK 2011 Cyclin D3 promotes myogenic differentiation and Pax7 transcription. J. Cell. Biochem. 113 209–219

    Article  Google Scholar 

  • He TC, Zhou S, da Costa LT, Yu J, Kinzler KW and Vogelstein B 1998 A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95 2509–2514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hinds PW, Dowdy SF, Eaton EN, Arnold A and Weinberg RA 1994 Function of a human cyclin gene as an oncogene. Proc. Natl. Acad. Sci. USA 91 709–713

  • Inoue K and Sherr CJ 1998 Gene expression and cell cycle arrest mediated by transcription factor DMP1 is antagonized by D-type cyclins through a cyclin-dependent-kinase-independent mechanism. Mol. Cell. Biol. 18 1590–1600

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jian Y, Yan J, Wang H, Chen C, Sun M, Jiang J, Lu J, Yang Y, et al. 2005 Cyclin D3 interacts with vitamin D receptor and regulates its transcription activity. Biochem. Biophys. Res. Commun. 335 739–748

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Wang GL, Shi X, Darlington GJ and Timchenko NA 2009 The age-associated decline of glycogen synthase kinase 3beta plays a critical role in the inhibition of liver regeneration. Mol. Cell. Biol. 29 3867–3880

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones K, Wei C, Iakova P, Bugiardini E, Schneider-Gold C, Meola G, Woodgett J, Killian J, et al. 2012 GSK3β mediates muscle pathology in myotonic dystrophy. J. Clin. Invest. 122 4461–4472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Juan AH, Derfoul A, Feng X, Ryall JG, Dell'Orso S, Pasut A, Zare H, Simone JM, et al. 2011 Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells. Genes Dev. 25 789–794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knudsen KE, Cavenee WK and Arden KC 1999 D-type cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability. Cancer Res. 59 2297–2301

    CAS  PubMed  Google Scholar 

  • L'Honore A, Lamb NJ, Vandromme M, Turowski P, Carnac G and Fernandez A 2003 MyoD distal regulatory region contains an SRF binding CArG element required for MyoD expression in skeletal myoblasts and during muscle regeneration. Mol. Biol. Cell. 14 2151–2162

    Article  PubMed Central  PubMed  Google Scholar 

  • Ling BM, Bharathy N, Chung TK, Kok WK, Li S, Tan YH, Rao VK, Gopinadhan S, et al. 2012 Lysine methyltransferase G9a methylates the transcription factor MyoD and regulates skeletal muscle differentiation. Proc. Natl. Acad. Sci. USA 109 841–846

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu W, Sun M, Jiang J, Shen X, Sun Q, Shen H and Gu J 2004 Cyclin D3 interacts with human activating transcription factor 5 and potentiates its transcription activity. Biochem. Biophys. Res. Commun. 321 954–960

    Article  CAS  PubMed  Google Scholar 

  • Loh YH, Zhang W, Chen X, George J and Ng HH 2007 Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev. 21 2545–2557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mal A, Sturniolo M, Schiltz RL, Ghosh MK and Harter ML 2001 A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program. EMBO J. 20 1739–1753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mal AK 2006 Histone methyltransferase Suv39h1 represses MyoD-stimulated myogenic differentiation. EMBO J. 25 3323–3334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Margueron R, Li G, Sarma K, Blais A, Zavadil J, Woodcock CL, Dynlacht BD and Reinberg D 2008 Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol. Cell. 32 503–518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mariappan I, Gurung R, Thanumalayan S and Parnaik VK 2007 Identification of cyclin D3 as a new interaction partner of lamin A/C. Biochem. Biophys. Res. Commun. 355 981–985

    Article  CAS  PubMed  Google Scholar 

  • Mariappan I and Parnaik VK 2005 Sequestration of pRb by cyclin D3 causes intranuclear reorganization of lamin A/C during muscle cell differentiation. Mol. Biol. Cell. 16 1948–1960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McMahon C, Suthiphongchai T, DiRenzo J and Ewen ME 1999 P/CAF associates with cyclin D1 and potentiates its activation of the estrogen receptor. Proc. Natl. Acad. Sci. USA 96 5382–5387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palacios D, Mozzetta C, Consalvi S, Caretti G, Saccone V, Proserpio V, Marquez VE, Valente S, et al. 2010 TNF/p38alpha/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell. 7 455–469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palacios D and Puri PL 2006 The epigenetic network regulating muscle development and regeneration. J. Cell. Physiol. 207 1–11

    Article  CAS  PubMed  Google Scholar 

  • Parnaik VK and Manju K 2006 Laminopathies: multiple disorders arising from defects in nuclear architecture. J. Biosci. 31 405–421

    Article  CAS  PubMed  Google Scholar 

  • Perdiguero E, Sousa-Victor P, Ballestar E and Munoz-Canoves P 2009 Epigenetic regulation of myogenesis. Epigenetics 4 541–550

    Article  CAS  PubMed  Google Scholar 

  • Powers SE, Mandal M, Matsuda S, Miletic AV, Cato MH, Tanaka A, Rickert RC, Koyasu S, et al. 2012 Subnuclear cyclin D3 compartments and the coordinated regulation of proliferation and immunoglobulin variable gene repression. J. Exp. Med. 209 2199–2213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Puri PL, Avantaggiati ML, Balsano C, Sang N, Graessmann A, Giordano A and Levrero M 1997 p300 is required for MyoD-dependent cell cycle arrest and muscle-specific gene transcription. EMBO J. 16 369–383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salisbury E, Sakai K, Schoser B, Huichalaf C, Schneider-Gold C, Nguyen H, Wang GL, Albrecht JH, et al. 2008 Ectopic expression of cyclin D3 corrects differentiation of DM1 myoblasts through activation of RNA CUG-binding protein, CUGBP1. Exp. Cell. Res. 314 2266–2278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, Guenou H, Malissen B, et al. 2011 Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138 3647–3656

    Article  CAS  PubMed  Google Scholar 

  • Sarruf DA, Iankova I, Abella A, Assou S, Miard S and Fajas L 2005 Cyclin D3 promotes adipogenesis through activation of peroxisome proliferator-activated receptor gamma. Mol. Cell. Biol. 25 9985–9995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seenundun S, Rampalli S, Liu QC, Aziz A, Palii C, Hong S, Blais A, Brand M, et al. 2010 UTX mediates demethylation of H3K27me3 at muscle-specific genes during myogenesis. EMBO J. 29 1401–1411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sicinska E, Aifantis I, Le Cam L, Swat W, Borowski C, Yu Q, Ferrando AA, Levin SD, et al. 2003 Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell. 4 451–461

    Article  CAS  PubMed  Google Scholar 

  • Stern-Straeter J, Bonaterra GA, Hormann K, Kinscherf R and Goessler UR 2009 Identification of valid reference genes during the differentiation of human myoblasts. BMC Mol. Biol. 10 66

    Article  PubMed Central  PubMed  Google Scholar 

  • Stojic L, Jasencakova Z, Prezioso C, Stutzer A, Bodega B, Pasini D, Klingberg R, Mozzetta C, et al. 2011 Chromatin regulated interchange between polycomb repressive complex 2 (PRC2)-Ezh2 and PRC2-Ezh1 complexes controls myogenin activation in skeletal muscle cells. Epigenetics Chromatin 4 16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tao Y, Neppl RL, Huang ZP, Chen J, Tang RH, Cao R, Zhang Y, Jin SW, et al. 2011 The histone methyltransferase Set7/9 promotes myoblast differentiation and myofibril assembly. J. Cell Biol. 194 551–565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Timchenko NA, Iakova P, Cai ZJ, Smith JR and Timchenko LT 2001 Molecular basis for impaired muscle differentiation in myotonic dystrophy. Mol. Cell. Biol. 21 6927–6938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yaffe D and Saxel O 1977 Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270 725–727

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P Hinds and Indumathi Mariappan for their generous gifts of plasmids. FA was supported by a Senior Research Fellowship from the Council of Scientific and Industrial Research, India. VKP is a recipient of the JC Bose National Fellowship from the Department of Science and Technology, India. Financial support from the Department of Science and Technology and Council for Scientific and Industrial Research Network Project BSC208 for this work is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veena K Parnaik.

Additional information

Corresponding editor: Shweta Tyagi

[Athar F and Parnaik VK 2015 Potential gene regulatory role for cyclin D3 in muscle cells. J. Biosci.] DOI 10.1007/s12038-015-9533-5

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athar, F., Parnaik, V.K. Potential gene regulatory role for cyclin D3 in muscle cells. J Biosci 40, 497–512 (2015). https://doi.org/10.1007/s12038-015-9533-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-015-9533-5

Keywords

Navigation