Skip to main content
Log in

Human platelet releasates combined with polyglycolic acid scaffold promote chondrocyte differentiation and phenotypic maintenance

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

In the present study, we aimed to demonstrate the differentiating properties of platelet-rich plasma releasates (PRPr) on human chondrocytes seeded on a polygtlycolic acid (PGA) 3D scaffold. Gene expression and biochemical analysis were carried out to assess the improved quality of our PGA-based cartilage constructs supplemented with PRPr. We observed that the use of PRPr as cell cultures supplementation to PGA-chondrocyte constructs may promote chondrocyte differentiation, and thus may contribute to maintaining the chondrogenic phenotype longer than conventional supplementation by increasing high levels of important chondrogenic markers (e.g. sox9, aggrecan and type II collagen), without induction of type I collagen. Moreover, our constructs were analysed for the secretion and deposition of important ECM molecules (sGAG, type II collagen, etc.). Our results indicate that PRPr supplementation may synergize with PGA-based scaffolds to stimulate human articular chondrocyte differentiation, maturation and phenotypic maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Andia I, Sánchez M and Maffulli N 2011 Platelet rich plasma therapies for sports muscle injuries: any evidence behind clinical practice? Expert. Opin. Biol. Ther. 11 509–518

    Article  PubMed  Google Scholar 

  • Anitua E, Andía I, Sanchez M, Azofra J, del Mar ZM, de la Fuente M, Nurden P and Nurden AT 2005 Autologous preparations rich in growth factors promote proliferation and induce VEGF and HGF production by human tendon cells in culture. J. Orthop. Res. 23 281–286

    Article  CAS  PubMed  Google Scholar 

  • Anitua E, Muruzabal F, De la Fuente M, Merayo-Lloves J and Orive G 2014 Effects of heat-treatment on plasma rich in growth factors-derived autologous eye drop. Exp. Eye Res. 119 27–34

    Article  CAS  PubMed  Google Scholar 

  • Banu N, Banu Y, Sakai M, Mashino T and Tsuchiya T 2005 Biodegradable polymers in chondrogenesis of human articular chondrocytes. Int. J. Artif. Organs 8 184–191

    Article  CAS  Google Scholar 

  • Bendinelli P, Matteucci E, Dogliotti G, Corsi MM, Banfi G, Maroni P and Desiderio MA 2010 Molecular basis of anti-inflammatory action of platelet-rich plasma on human chondrocytes: mechanisms of NF-κB inhibition via HGF. J. Cell. Physiol. 225 757–766

    Article  CAS  PubMed  Google Scholar 

  • Borzini P and Mazzucco L 2005 Tissue regeneration and in loco administration of platelet derivatives: clinical outcome, heterogeneous products, and heterogeneity of the effector mechanisms. Transfusion 45 1759–1767

    Article  CAS  PubMed  Google Scholar 

  • Demoor M, Maneix L, Ollitrault D, Legendre F, Duval E, Claus S, Mallein-Gerin F, Moslemi S, et al. 2012 Deciphering chondrocyte behaviour in matrix-induced autologous chondrocyte implantation to undergo accurate cartilage repair with hyaline matrix. Pathol. Biol. (Paris) 60 199–207

  • Demmor-Fossard M, Boittin M, Redini F and Pujol JP 1999 Differential effects of interleukin-1 and transforming growth factor beta on the synthesis of small proteoglycans by rabbit articular chondrocytes cultured in alginate beads as compared to monolayers. Mol. Cell. Biochem. 199 69–80

    Article  Google Scholar 

  • Endres M, Neumann K, Schröder SE, Vetterlein S, Morawietz L, Ringe J, Sittinger M and Kaps C 2007 Human polymer-based cartilage grafts for the regeneration of articular cartilage defects. Tissue Cell 39 293–301

    Article  CAS  PubMed  Google Scholar 

  • Gaissmaier C, Fritz J, Krackhardt T, Flesch I, Aicher WK and Ashammakhi N 2005 Effect of human platelet supernatant on proliferation and matrix synthesis of human articular chondrocytes in monolayer and three-dimensional alginate cultures. Biomaterials 26 1953–1960

    Article  CAS  PubMed  Google Scholar 

  • Hildner F, Albrecht C, Gabriel C, Redl H and van Griensven M 2011 State of the art and future perspectives of articular cartilage regeneration: a focus on adipose-derived stem cells and platelet-derived products. J. Tissue Eng. Regen. Med. 5 e36–e51

    Article  CAS  PubMed  Google Scholar 

  • Hao J, Varshney RR and Wang DA 2009 Engineering osteogenesis and chondrogenesis with gene-enhanced therapeutic cells. Curr. Opin. Mol. Ther. 11 404–410

    CAS  PubMed  Google Scholar 

  • Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W and Nishihara T 2005 Platelet-rich plasma enhances human osteoblast-like cell proliferation and differentiation. J. Oral Maxillofac. Surg. 63 362–369

    Article  PubMed  Google Scholar 

  • Koellensperger E, Bollinger N, Dexheimer V, Gramley F, Germann G and Leimer U 2014 Choosing the right type of serum for different applications of human adipose tissue-derived stem cells: influence on proliferation and differentiation abilities. Cytotherapy 16 789–799

    Article  CAS  PubMed  Google Scholar 

  • Komura M, Komura H, Kanamori Y, Tanaka Y, Ohatani Y, Ishimaru T, Sugiyama M, Hoshi K, et al. 2010 Study of mechanical properties of engineered cartilage in an in vivo culture for design of a biodegradable scaffold. Int. J. Artif. Organs 33 775–781

    CAS  PubMed  Google Scholar 

  • Lippross S, Moeller B, Haas H, Tohidnezhad M, Steubesand N, Wruck CJ, Kurz B, Seekamp A, et al. 2011 Intraarticular injection of platelet-rich plasma reduces inflammation in a pig model of rheumatoid arthritis of the knee joint. Arthritis Rheum. 63 3344–3353

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Vidriero E, Goulding KA, Simon DA, Sanchez M and Johnson DH 2010 The use of platelet-rich plasma in arthroscopy and sports medicine: optimizing the healing environment. Arthroscopy 26 269–278

    Article  PubMed  Google Scholar 

  • Matsiko A, Levingstone TJ and O’Brien FJ 2013 Advanced strategies for articular cartilage defect repair. Materials 6 637–668

    Article  CAS  Google Scholar 

  • McCanless JD, Jennings LK, Cole JA, Bumgardner JD and Haggard WO 2012 In vitro differentiation and biocompatibility of mesenchymal stem cells on a novel platelet releasate-containing injectable composite. J. Biomed. Mater. Res. A. 100 220–229

    Article  PubMed  Google Scholar 

  • Mishra A, Woodall J Jr and Vieira A 2009 Treatment of tendon and muscle using platelet-rich plasma. Clin. Sports Med. 28 113–125

    Article  PubMed  Google Scholar 

  • Mouw JK, Case ND, Guldberg RE, Plaas AH and Levenston ME 2005 Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering. Osteoarthr. Cartil. 13 828–836

  • Murphy S 2005 Platelets from pooled buffy coats: an update. Transfusion 45 634–639

    Article  PubMed  Google Scholar 

  • Park SI, Lee HR, Kim S, Ahn MW and Do SH 2012 Time-sequential modulation in expression of growth factors from platelet-rich plasma (PRP) on the chondrocyte cultures. Mol. Cell. Biochem. 361 9–17

    Article  CAS  PubMed  Google Scholar 

  • Sawamura K, Ikeda T, Nagae M, Okamoto S, Mikami Y, Hase H, Ikoma K, Yamada T, et al. 2009 Characterization of in vivo effects of platelet-rich plasma and biodegradable gelatin hydrogel microspheres on degenerated intervertebral discs. Tissue Eng. A 15 3719–3727

    Article  CAS  Google Scholar 

  • Shen YX, Fan ZH, Zhao JG and Zhang P 2009 The application of platelet-rich plasma may be a novel treatment for central nervous system diseases. Med. Hypotheses 73 1038–1040

    Article  CAS  PubMed  Google Scholar 

  • Siclari A, Mascaro G, Gentili C, Cancedda R and Boux E 2012 A cell-free scaffold-based cartilage repair provides improved function hyaline-like repair at one year. Clin. Orthop. Relat. Res. 470 910–919

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith SE and Roukis TS 2009 Bone and wound healing augmentation with platelet-rich plasma. Clin. Podiatr. Med. Surg. 26 559–588

    Article  PubMed  Google Scholar 

  • Smyth NA, Murawski CD, Haleem AM, Hannon CP, Savage-Elliott I and Kennedy JG 2012 Establishing proof of concept: Platelet-rich plasma and bone marrow aspirate concentrate may improve cartilage repair following surgical treatment for osteochondral lesions of the talus. World J. Orthop. 3 101–108

    Article  PubMed Central  PubMed  Google Scholar 

  • Spreafico A, Chellini F, Frediani B, Bernardini G, Niccolini S, Serchi T, Collodel G, Paffetti A, et al. 2009 Biochemical investigation of the effects of human platelet releasates on human articular chondrocytes. J. Cell. Biochem. 108 1153–1165

    Article  CAS  PubMed  Google Scholar 

  • Stokes DG, Liu G, Dharmavaram R, Hawkins D, Piera-Velazquez S and Jimenez SA 2001 Regulation of type-II collagen gene expression during human chondrocyte de-differentiation and recovery of chondrocyte-specific phenotype in culture involves Sry-type high-mobility-group box (SOX) transcription factors. Biochem. J. 360 461–470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trimborn M, Endres M, Bommer C, Janke U, Krüger JP, Morawietz L, Kreuz PC and Kaps C 2012 Karyotyping of human chondrocytes in scaffold-assisted cartilage tissue engineering. Acta Biomater. 8 1519–1529

    Article  CAS  PubMed  Google Scholar 

  • Wu CC, Chen WH, Zao B, Lai PL, Lin TC, Lo HY, Shieh YH, Wu CH, et al. 2011 Regenerative potentials of platelet-rich plasma enhanced by collagen in retrieving pro-inflammatory cytokine-inhibited chondrogenesis. Biomaterials 32 5847–5854

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Chen F, Liu Y, Ma Q and Mao T 2007 Autologous injectable tissue-engineered cartilage by using platelet-rich plasma: experimental study in a rabbit model. J. Oral Maxillofac. Surg. 65 1951–1957

    Article  PubMed  Google Scholar 

  • Yamashita S, Andoh M, Ueno-Kudoh H, Sato T, Miyaki S and Asahara H 2009 Sox9 directly promotes Bapx1 gene expression to repress Runx2 in chondrocytes. Exp. Cell Res. 315 2231–2240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou G, Zheng Q, Engin F, Munivez E, Chen Y, Sebald E, Krakow D and Lee B 2006 Dominance of SOX9 function over RUNX2 during skeletogenesis. Proc. Natl. Acad. Sci. USA 103 19004–19009

  • Zwingmann J, Mehlhorn AT, Südkamp N, Stark B, Dauner M and Schmal H 2007 Chondrogenic differentiation of human articular chondrocytes differs in biodegradable PGA/PLA scaffolds. Tissue Eng. 13 2335–2343

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is dedicated to the memory of Professor Roberto Marcolongo.

This work has been supported by Telethon; Contract grant number: GGP10058. The authors also thank Toscana Life Sciences Orphan_1 project, Fondazione Monte dei Paschi di Siena 2008-2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Santucci.

Additional information

Corresponding editor: Geeta Vemuganti

Giulia Bernardini and Federico Chellini contributed equally to this work.

[Bernardini G, Chellini F, Frediani B, Spreafico A and Santucci A 2015 Human platelet releasates combined with polyglycolic acid scaffold promote chondrocyte differentiation and phenotypic maintenance. J. Biosci. 40 1–9] DOI 10.1007/s12038-014-9492-2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardini, G., Chellini, F., Frediani, B. et al. Human platelet releasates combined with polyglycolic acid scaffold promote chondrocyte differentiation and phenotypic maintenance. J Biosci 40, 61–69 (2015). https://doi.org/10.1007/s12038-014-9492-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-014-9492-2

Keywords

Navigation