Skip to main content
Log in

Evolution and expression analysis of the soybean glutamate decarboxylase gene family

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Glutamate decarboxylase (GAD) is an enzyme that catalyses the conversion of l-glutamate into γ-aminobutyric acid (GABA), which is a four-carbon non-protein amino acid present in all organisms. Although plant GAD plays important roles in GABA biosynthesis, our knowledge concerning GAD gene family members and their evolutionary relationship remains limited. Therefore, in this study, we have analysed the evolutionary mechanisms of soybean GAD genes and suggested that these genes expanded in the soybean genome partly due to segmental duplication events. The approximate dates of duplication events were calculated using the synonymous substitution rate, and we suggested that the segmental duplication of GAD genes in soybean originated 9.47 to 11.84 million years ago (Mya). In addition, all segmental duplication pairs (GmGAD1/3 and GmGAD2/4) are subject to purifying selection. Furthermore, GmGAD genes displayed differential expression either in their transcript abundance or in their expression patterns under abiotic stress conditions like salt, drought, and cold. The expression pattern of paralogous pairs suggested that they might have undergone neofunctionalization during the subsequent evolution process. Taken together, our results provide valuable information for the evolution of the GAD gene family and represent the basis for future research on the functional characterization of GAD genes in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Baum G, Chen Y, Arazi T, Takatsuji H and Fromm H 1993 A plant glutamate decarboxylase containing a calmodulin binding domain. Cloning, sequence, and functional analysis. J. Biol. Chem. 268 19610–19617

    CAS  PubMed  Google Scholar 

  • Ben-Ari Y, Khalilov I, Kahle KT and Cherubini E 2012 The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist 18 467–486

    Article  PubMed  Google Scholar 

  • Beuve NRN, Laine P, Cliquet J-B, Ourry A and Le Deunff E 2004 Putative role of γ-aminobutyric acid (GABA) as a long-distance signal in up-regulation of nitrate uptake in Brassica napus L. Plant Cell Environ. 27 1035–1046

    Article  CAS  Google Scholar 

  • Bouche N and Fromm H 2004 GABA in plants: just a metabolite? Trends Plant Sci. 9 110–115

    Article  CAS  PubMed  Google Scholar 

  • Bouché N, Lacombe B and Fromm H 2003 GABA signaling: a conserved and ubiquitous mechanism. Trends Cell Biol. 13 607–610

    Article  PubMed  Google Scholar 

  • Bown AW, Macgregor KB and Shelp BJ 2006 Gamma-aminobutyrate: defense against invertebrate pests? Trends Plant Sci. 11 424–427

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, et al. 2002 Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14 559–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flagel LE and Wendel JF 2009 Gene duplication and evolutionary novelty in plants. New Phytol. 183 557–564

    Article  PubMed  Google Scholar 

  • Hyun TK, Eom SH, Jeun YC, Han SH and Kim J-S 2013 Identification of glutamate decarboxylases as a γ-aminobutyric acid (GABA) biosynthetic enzyme in soybean. Ind. Crop. Prod. 49 864–870

    Article  CAS  Google Scholar 

  • Jiang SY, González JM and Ramachandran S 2013 Comparative genomic and transcriptomic analysis of tandemly and segmentally duplicated genes in rice. PLoS One 8 e63551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar V, Rani A, Pandey V and Chauhan GS 2006 Changes in lipoxygenase isozymes and trypsin inhibitor activity in soybean during germination at different temperatures. Food Chem. 99 565–568

    Article  Google Scholar 

  • Lancien M and Roberts MR 2006 Regulation of Arabidopsis thaliana 14-3-3 gene expression by γ-aminobutyric acid. Plant Cell Environ. 29 1430–1436

    Article  CAS  PubMed  Google Scholar 

  • Lestari P, Van K, Lee J, Kang YJ and Lee SH 2013 Gene divergence of homeologous regions associated with a major seed protein content QTL in soybean. Front. Plant Sci. 4 176

    Article  PubMed Central  PubMed  Google Scholar 

  • Ling Y, Chen T, Jing Y, Fan L, Wan Y and Lin J 2013 γ-Aminobutyric acid (GABA) homeostasis regulates pollen germination and polarized growth in Picea wilsonii. Planta 238 831–843

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Song F, Goodman RM and Zheng Z 2005 Up-regulation of OsBIHD1, a rice gene encoding BELL homeodomain transcriptional factor, in disease resistance responses. Plant Biol. (Stuttg.) 7 459–468

    Article  CAS  Google Scholar 

  • Lynch M and Conery JS 2000 The evolutionary fate and consequences of duplicate genes. Science 290 1151–1155

  • Matsuyama A, Yoshimura K, Shimizu C, Murano Y, Takeuchi H and Ishimoto M 2009 Characterization of glutamate decarboxylase mediating gamma-amino butyric acid increase in the early germination stage of soybean (Glycine max [L.] Merr). J. Biosci. Bioeng. 107 538–543

    Article  CAS  PubMed  Google Scholar 

  • Molina-Rueda JJ, Pascual MB, Canovas FM and Gallardo F 2010 Characterization and developmental expression of a glutamate decarboxylase from maritime pine. Planta 232 1471–1483

    Article  CAS  PubMed  Google Scholar 

  • Nogata Y and Nagamine T 2009 Production of free amino acids and gamma-aminobutyric acid by autolysis reactions from wheat bran. J. Agric. Food Chem. 57 1331–1336

    Article  CAS  PubMed  Google Scholar 

  • Oh CH and Oh SH 2004 Effects of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis. J. Med. Food 7 19–23

    Article  CAS  PubMed  Google Scholar 

  • Oh SH, Soh JR and Cha YS 2003 Germinated brown rice extract shows a nutracetical effect in the recovery of chronic alchol-related symptoms. J. Med. Food 6 115–121

  • Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC et al. 2004 Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol. 135 2150–2161

  • Queiroz HM, Sodek L and Haddad CRB 2012 Effect of salt on the growth and metabolism of Glycine max. Braz. Arch. Biol. Technol. 55 809–817

    Article  CAS  Google Scholar 

  • Reddy UK, Almeida A, Abburi VL, Alaparthi SB, Unselt D, Hankins G, Park M, Choi D, et al. 2014 Identification of gene-specific polymorphisms and association with capsaicin pathway metabolites in Capsicum annuum L. collections. PLoS One 9 e86393

    Article  PubMed Central  PubMed  Google Scholar 

  • Renault H, Roussel V, El Amrani A, Arzel M, Renault D, Bouchereau A and Deleu C 2010 The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol. 10 20

    Article  PubMed Central  PubMed  Google Scholar 

  • Roberts MR 2007 Does GABA Act as a signal in plants?: Hints from molecular studies. Plant Signal. Behav. 2 408–409

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, et al. 2010 Genome sequence of the palaeopolyploid soybean. Nature 463 178–183

    Article  CAS  PubMed  Google Scholar 

  • Schneider KT, van de Mortel M, Bancroft TJ, Braun E, Nettleton D, Nelson RT, Frederick RD, Baum TJ, et al. 2011 Biphasic gene expression changes elicited by Phakopsora pachyrhizi in soybean correlate with fungal penetration and haustoria formation. Plant Physiol. 157 355–371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Severin AJ, Cannon SB, Graham MM, Grant D and Shoemaker RC 2011 Changes in twelve homoeologous genomic regions in soybean following three rounds of polyploidy. Plant Cell 23 3129–3136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shelp BJ, Bown AW and McLean MD 1999 Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci. 4 446–452

    Article  PubMed  Google Scholar 

  • Shelp BJ, Bozzo GG, Trobacher CP, Zarei A, Deyman KL and Brikis CJ 2012 Hypothesis/review: contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Sci. 193-194 130–135

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Nam PK and Ma Y 2010a Comprehensive profiling of isoflavones, phytosterols, tocopherols, minerals, crude protein, lipid, and sugar during soybean (Glycine max) germination. J. Agric. Food Chem. 58 4970–4976

    Article  CAS  PubMed  Google Scholar 

  • Shi SQ, Shi Z, Jiang ZP, Qi LW, Sun XM, Li CX, Liu JF, Xiao WF, et al. 2010b Effects of exogenous GABA on gene expression of Caragana intermedia roots under NaCl stress: regulatory roles for H2O2 and ethylene production. Plant Cell Environ. 33 149–162

    Article  CAS  PubMed  Google Scholar 

  • Snedden WA, Arazi T, Fromm H and Shelp BJ 1995 Calcium/calmodulin activation of soybean glutamate decarboxylase. Plant Physiol. 108 543–549

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tajima F 1993 Simple methods for testing molecular clock hypothesis. Genetics 135 599–607

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takeshima K, Yamatsu A, Yamashita Y, Watabe K, Horie N, Masuda K and Kim M 2014 Subchronic toxicity evaluation of γ-aminobutyric acid (GABA) in rats. Food Chem. Toxicol. 68 128–134

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M and Kumar S 2007 MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24 1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Ge X, Tian X, Zhang Y, Zhang J and Zhang P 2013 Soy isoflavones: the multipurpose phytochemical (review). Biomed. Rep. 1 697–701

    CAS  PubMed Central  PubMed  Google Scholar 

  • von Schantz M, Jenkins A and Archer SN 2006 Evolutionary history of the vertebrate period genes. J. Mol. Evol. 62 701–707

    Article  CAS  Google Scholar 

  • Xing SG, Jun YB, Hau ZW and Liang LY 2007 Higher accumulation of gamma-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr. roots. Plant Physiol. Biochem. 45 560–566

    Article  CAS  PubMed  Google Scholar 

  • Xu J-G and Hu Q-P 2014 Changes in γ-aminobutyric acid content and related enzyme activities in Jindou 25 soybean (Glycine max L.) seeds during germination. LWT Food Sci. Technol. 55 341–346

    Article  CAS  Google Scholar 

  • Yang R, Guo Q and Gu Z 2013 GABA shunt and polyamine degradation pathway on γ-aminobutyric acid accumulation in germinating fava bean (Vicia faba L.) under hypoxia. Food Chem. 136 152–159

    Article  CAS  PubMed  Google Scholar 

  • Yang Z 2007 PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24 1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yang Z and Nielsen R 2000 Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 17 32–43

    Article  CAS  PubMed  Google Scholar 

  • Yin G, Xu H, Xiao S, Qin Y, Li Y, Yan Y and Hu Y 2013 The large soybean (Glycine max) WRKY TF family expanded by segmental duplication events and subsequent divergent selection among subgroups. BMC Plant Biol. 13 148

    Article  PubMed Central  PubMed  Google Scholar 

  • Yoshimura M, Toyoshi T, Sano A, Izumi T, Fujii T, Konishi C, Inai S, Matsukura C, et al. 2010 Antihypertensive effect of a gamma-aminobutyric acid rich tomato cultivar 'DG03-9' in spontaneously hypertensive rats. J. Agric. Food Chem. 58 615–619

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y and Danbolt NC 2013 GABA and glutamate transporters in brain. Front. Endocrinol. (Lausanne) 4 165

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2004432), Republic of Korea

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Sung Kim.

Additional information

Corresponding editor: Rajeev Kumar Varshney

[Hyun TK, Eom SH, Han X and Kim J-S 2014 Evolution and expression analysis of the soybean glutamate decarboxylase gene family. J. Biosci. 39 1–9] DOI 10.1007/s12038-014-9484-2

Supplementary materials pertaining to this article are available on the Journal of Biosciences Website at http://www.ias.ac.in/jbiosci/dec2014/supp/Hyun.pdf

Tae Kyung Hyun and Seung Hee Eom contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 212 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyun, T.K., Eom, S.H., Han, X. et al. Evolution and expression analysis of the soybean glutamate decarboxylase gene family. J Biosci 39, 899–907 (2014). https://doi.org/10.1007/s12038-014-9484-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-014-9484-2

Keywords

Navigation