Journal of Biosciences

, Volume 39, Issue 4, pp 555–563 | Cite as

Molecular determinants of odorant receptor function in insects

  • Anandasankar Ray
  • Wynand van der Goes van Naters
  • John R Carlson
Article

Abstract

The olfactory system of Drosophila melanogaster provides a powerful model to study molecular and cellular mechanisms underlying function of a sensory system. In the 1970s Siddiqi and colleagues pioneered the application of genetics to olfactory research and isolated several mutant Drosophila with odorant-specific defects in olfactory behaviour, suggesting that odorants are detected differentially by the olfactory system. Since then basic principles of olfactory system function and development have emerged using Drosophila as a model. Nearly four decades later we can add computational methods to further our understanding of how specific odorants are detected by receptors. Using a comparative approach we identify two categories of short amino acid sequence motifs: ones that are conserved family-wide predominantly in the C-terminal half of most receptors, and ones that are present in receptors that detect a specific odorant, 4-methylphenol, found predominantly in the N-terminal half. The odorant-specific sequence motifs are predictors of phenol detection in Anopheles gambiae and other insects, suggesting they are likely to participate in odorant binding. Conversely, the family-wide motifs are expected to participate in shared functions across all receptors and a mutation in the most conserved motif leads to a reduction in odor response. These findings lay a foundation for investigating functional domains within odorant receptors that can lead to a molecular understanding of odor detection.

Keywords

Drosophila motifs odor receptor olfaction 

Supplementary material

12038_2014_9447_MOESM1_ESM.pdf (1.1 mb)
ESM 1(PDF 1.13 mb)

References

  1. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, et al. 2009 MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37 W202–W208PubMedCentralPubMedCrossRefGoogle Scholar
  2. Benton R, Sachse S, Michnick SW and Vosshall LB 2006 Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol. 4 e20PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bohbot J, Pitts RJ, Kwon, HW, Rutzler M, Robertson HM and Zwiebel LJ 2007 Molecular characterization of the Aedes aegypti odorant receptor gene family. Insect Mol. Biol. 16 525–537Google Scholar
  4. Carey AF, Wang G, Su CY, Zwiebel LJ and Carlson JR 2010 Odorant reception in the malaria mosquito Anopheles gambiae. Nature 464 66–71PubMedCentralPubMedCrossRefGoogle Scholar
  5. Dobritsa AA, van der Goes van Naters W, Warr CG, Steinbrecht RA and Carlson JR 2003 Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37 827–841PubMedCrossRefGoogle Scholar
  6. Engsontia P, Sanderson AP, Cobb M, Walden KK, Robertson HM and Brown S 2008 The red flour beetle's large nose: an expanded odorant receptor gene family in Tribolium castaneum. Insect Biochem. Mol. Biol. 38 387–397PubMedCrossRefGoogle Scholar
  7. Fox A, Pitts R, Robertson H, Carlson JR and Zwiebel L 2001 Candidate odor receptors from the malaria vector mosquito, Anopheles gambiae. Proc. Natl. Acad. Sci. USA 98 14693–14697PubMedCentralPubMedCrossRefGoogle Scholar
  8. Goldman AL, van der Goes van Naters W, Lessing D, Warr CG and Carlson JR 2005 Coexpression of two functional odor receptors in one neuron. Neuron 45 661666PubMedCrossRefGoogle Scholar
  9. Hallem EA and Carlson JR 2004 The odor coding system of Drosophila. Trends Genet. 20 453–459PubMedCrossRefGoogle Scholar
  10. Hallem EA and Carlson JR 2006 Coding of odors by a receptor repertoire. Cell 125 143–160PubMedCrossRefGoogle Scholar
  11. Hallem EA, Fox AN, Zwiebel LJ and Carlson JR 2004a Mosquito receptor for human-sweat odorant. Nature 427 212–213PubMedCrossRefGoogle Scholar
  12. Hallem EA, Ho MG and Carlson JR 2004b The molecular basis of odor coding in the Drosophila antenna. Cell 117 965–979PubMedCrossRefGoogle Scholar
  13. Hill CA, Fox AN, Pitts RJ, Kent LB, Tan PL, Chrystal, MA, Cravchik A, Collins FH, et al. 2002 G protein-coupled receptors in Anopheles gambiae. Science 298 176–178PubMedCrossRefGoogle Scholar
  14. Kreher SA, Mathew D, Kim, J and Carlson JR 2008 Translation of sensory input into behavioral output via an olfactory system. Neuron 59 110–124PubMedCentralPubMedCrossRefGoogle Scholar
  15. Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H and Vosshall LB 2004 Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43 703–714PubMedCrossRefGoogle Scholar
  16. Mathew D, Martelli C, Kelley-Swift E, Brusalis C, Gershow M, Samuel AD, Emonet T and Carlson JR 2013 Functional diversity among sensory receptors in a Drosophila olfactory circuit. Proc. Natl. Acad. Sci. USA 110 E2134–2143PubMedCentralPubMedCrossRefGoogle Scholar
  17. Nakagawa T, Pellegrino M, Sato K, Vosshall LB and Touhara K 2012 Amino acid residues contributing to function of the heteromeric insect olfactory receptor complex. PLoS ONE 7 e32372PubMedCentralPubMedCrossRefGoogle Scholar
  18. Neuhaus EM, Gisselmann G, Zhang W, Dooley R, Stortkuhl K and Hatt H 2005. Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nat. Neurosci. 8 15–17PubMedCrossRefGoogle Scholar
  19. Robertson HM and Wanner KW 2006 The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res. 16 1395–1403PubMedCentralPubMedCrossRefGoogle Scholar
  20. Sato K, Pellegrino M, Nakagawa T, Vosshall LB and Touhara K 2008 Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452 1002–1006PubMedCrossRefGoogle Scholar
  21. Su CY, Menuz K and Carlson JR 2009 Olfactory perception: receptors, cells, and circuits. Cell 139 45–59PubMedCentralPubMedCrossRefGoogle Scholar
  22. Vosshall LB and Stocker RF 2007 Molecular architecture of smell and taste in Drosophila. Annu. Rev. Neurosci. 30 505–533PubMedCrossRefGoogle Scholar
  23. Wang G, Carey AF, Carlson JR and Zwiebel LJ 2010 Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae. Proc. Natl. Acad. Sci. USA 107 4418–4423PubMedCentralPubMedCrossRefGoogle Scholar
  24. Wanner KW, Anderson AR, Trowell SC, Theilmann DA, Robertson HM and Newcomb RD 2007 Female-biased expression of odourant receptor genes in the adult antennae of the silkworm, Bombyx mori. Insect Mol. Biol. 16 107–119Google Scholar
  25. Wilson RI 2013 Early olfactory processing in Drosophila: mechanisms and principles. Annu. Rev. Neurosci. 36 217–241PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2014

Authors and Affiliations

  • Anandasankar Ray
    • 1
    • 2
  • Wynand van der Goes van Naters
    • 2
    • 3
  • John R Carlson
    • 2
  1. 1.Department of EntomologyUniversity of CaliforniaRiversideUSA
  2. 2.Department of Molecular, Cellular, and Developmental BiologyYale UniversityNew HavenUSA
  3. 3.School of BiosciencesCardiff UniversityCardiffUK

Personalised recommendations