Journal of Biosciences

, Volume 39, Issue 3, pp 513–517 | Cite as

Phylogenetic diversity of Mesorhizobium in chickpea

  • Dong Hyun Kim
  • Mayank Kaashyap
  • Abhishek Rathore
  • Roma R Das
  • Swathi Parupalli
  • Hari D Upadhyaya
  • S Gopalakrishnan
  • Pooran M Gaur
  • Sarvjeet Singh
  • Jagmeet Kaur
  • Mohammad Yasin
  • Rajeev K Varshney
Article

Abstract

Crop domestication, in general, has reduced genetic diversity in cultivated gene pool of chickpea (Cicer arietinum) as compared with wild species (C. reticulatum, C. bijugum). To explore impact of domestication on symbiosis, 10 accessions of chickpeas, including 4 accessions of C. arietinum, and 3 accessions of each of C. reticulatum and C. bijugum species, were selected and DNAs were extracted from their nodules. To distinguish chickpea symbiont, preliminary sequences analysis was attempted with 9 genes (16S rRNA, atpD, dnaJ, glnA, gyrB, nifH, nifK, nodD and recA) of which 3 genes (gyrB, nifK and nodD) were selected based on sufficient sequence diversity for further phylogenetic analysis. Phylogenetic analysis and sequence diversity for 3 genes demonstrated that sequences from C. reticulatum were more diverse. Nodule occupancy by dominant symbiont also indicated that C. reticulatum (60%) could have more various symbionts than cultivated chickpea (80%). The study demonstrated that wild chickpeas (C. reticulatum) could be used for selecting more diverse symbionts in the field conditions and it implies that chickpea domestication affected symbiosis negatively in addition to reducing genetic diversity.

Keywords

Chickpea domestication nitrogen fixation rhizobia symbiosis 

References

  1. Agarwal G, Jhanwar S, Priya P, Singh VK, Saxena MS, Parida SK, Garg R, Tyagi AK and Jain M 2012 Comparative analysis of kabuli chickpea transcriptome with desi and wild chickpea provides a rich resource for development of functional markers. PLoS ONE 7 e52443PubMedCentralPubMedCrossRefGoogle Scholar
  2. Ben Romdhane S, Aouani ME, Trabelsi M, De Lajudie P and Mhamdi R 2008 Selection of high nitrogen-fixing Rhizobia nodulating chickpea (Cicer arietinum) for semi-arid Tunisia. J. Agron. Crop Sci. 194 413–420Google Scholar
  3. Ben Romdhane S, Tajini F, Trabelsi M, Aouani M and Mhamdi R 2007 Competition for nodule formation between introduced strains of Mesorhizobium ciceri and the native populations of rhizobia nodulating chickpea (Cicer arietinum) in Tunisia. World J. Microbiol. Biotechnol. 23 1195–1201CrossRefGoogle Scholar
  4. Chen W-M, Zhu W-F, Bontemps C, Young JPW and Wei GH 2010 Mesorhizobium alhagi sp. nov., isolated from wild Alhagi sparsifolia in north-western China. Int. J. Syst. Evol. Microbiol. 60 958–962PubMedCrossRefGoogle Scholar
  5. Doebley JF, Gaut BS and Smith BD 2006 The molecular genetics of crop domestication. Cell 127 1309–1321PubMedCrossRefGoogle Scholar
  6. Fridman E, Carrari F, Liu Y-S, Fernie AR and Zamir D 2004 Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305 1786–1789PubMedCrossRefGoogle Scholar
  7. Hajjar R and Hodgkin T 2007 The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156 1–13CrossRefGoogle Scholar
  8. Kiers ET, Hutton MG and Denison RF 2007 Human selection and the relaxation of legume defences against ineffective rhizobia. Proc. R. Soc. B. 274 3119–3126PubMedCentralPubMedCrossRefGoogle Scholar
  9. Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P and Amarger N 2001 Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147 981–993PubMedGoogle Scholar
  10. Laranjo M, Alexandre A, Rivas R, Velázquez E, Young JPW and Oliveira S 2008 Chickpea rhizobia symbiosis genes are highly conserved across multiple Mesorhizobium species. FEMS Microbiol. Ecol. 66 391–400PubMedCrossRefGoogle Scholar
  11. Laranjo M, Young JPW and Oliveira S 2012 Multilocus sequence analysis reveals multiple symbiovars within Mesorhizobium species. Syst. Appl. Microbiol. 35 359–367PubMedCrossRefGoogle Scholar
  12. Lenser T and Theissen G 2013 Molecular mechanisms involved in convergent crop domestication. Trends Plant Sci. doi: 10.1016/j.tplants.2013.08.007 PubMedGoogle Scholar
  13. Margaret I, Becker A, Blom J, Bonilla I, Goesmann A, Göttfert M, Lloret J, Mittard-Runte V, et al. 2011 Symbiotic properties and first analyses of the genomic sequence of the fast growing model strain Sinorhizobium fredii HH103 nodulating soybean. J. Biotechnol. 155 11–19PubMedCrossRefGoogle Scholar
  14. Martens M, Delaere M, Coopman R, De Vos P, Gillis M and Willems A 2007 Multilocus sequence analysis of Ensifer and related taxa. Int. J. Syst. Evol. Microbiol. 57 489–503Google Scholar
  15. McCouch S, Baute GJ, Bradeen J, Bramel P, Bretting PK, Buckler E, Burke JM, Charest D, et al. 2013 Agriculture: Feeding the future. Nature 499 23–24PubMedCrossRefGoogle Scholar
  16. Ohri D and Pal M 1991 The origin of chickpea (Cicer arietinum L.): karyotype and nuclear DNA amount. Heredity 66 367–372CrossRefGoogle Scholar
  17. Olsen KM and Wendel JF 2013 A bountiful harvest: genomic insights into crop domestication phenotypes. Annu. Rev. Plant Biol. 64 47–70PubMedCrossRefGoogle Scholar
  18. Ormeno-Orrillo E, Menna P, Almeida LG, Ollero FJ, Nicolas MF, Pains Rodrigues E, Shigueyoshi Nakatani A, Silva Batista JS, et al. 2012 Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genomics 13 735PubMedCentralPubMedCrossRefGoogle Scholar
  19. Sachs JL, Ehinger MO and Simms EL 2010 Origins of cheating and loss of symbiosis in wild Bradyrhizobium. J. Evol. Biol. 23 1075–1089PubMedCrossRefGoogle Scholar
  20. Schmalenbach I, Léon J and Pillen K 2009 Identification and verification of QTLs for agronomic traits using wild barley introgression lines. Theor. Appl. Genet. 118 483–497PubMedCrossRefGoogle Scholar
  21. Tamura K, Peterson D, Peterson N, Stecher G, Nei M and Kumar S 2011 MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28 2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  22. Thompson J, Reen R, Clewett T, Sheedy J, Kelly A, Gogel B and Knights E 2011 Hybridisation of Australian chickpea cultivars with wild Cicer spp. increases resistance to root-lesion nematodes (Pratylenchus thornei and P. neglectus). Australas. Plant Pathol. 40 601–611Google Scholar
  23. Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, et al. 2013 Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotech. 31 240–246CrossRefGoogle Scholar
  24. Weisburg WG, Barns SM, Pelletier DA and Lane DJ 1991 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173 697–703PubMedCentralPubMedGoogle Scholar
  25. Wielbo J, Marek-Kozaczuk M, Mazur A, Kubik-Komar A and Skorupska A 2010 Genetic and metabolic divergence within a Rhizobium leguminosarum bv. trifolii population recovered from cover nodules. Appl. Environ. Microbiol. 76 4593–4600PubMedCentralPubMedCrossRefGoogle Scholar
  26. White J, Navlakha S, Nagarajan N, Ghodsi M-R, Kingsford C and Pop M 2010 Alignment and clustering of phylogenetic markers - implications for microbial diversity studies. BMC Bioinformatics 11 152PubMedCentralPubMedCrossRefGoogle Scholar
  27. Zahran HH 2001 Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J. Biotechnol. 91 143–153PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2014

Authors and Affiliations

  • Dong Hyun Kim
    • 1
  • Mayank Kaashyap
    • 1
  • Abhishek Rathore
    • 1
  • Roma R Das
    • 1
  • Swathi Parupalli
    • 1
  • Hari D Upadhyaya
    • 1
  • S Gopalakrishnan
    • 1
  • Pooran M Gaur
    • 1
  • Sarvjeet Singh
    • 2
  • Jagmeet Kaur
    • 2
  • Mohammad Yasin
    • 3
  • Rajeev K Varshney
    • 1
    • 4
  1. 1.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)PatancheruIndia
  2. 2.Punjab Agricultural UniversityLudhianaIndia
  3. 3.RAK College of AgricultureSehoreIndia
  4. 4.CGIAR Generation Challenge Program, C/o CIMMYTMexicoMexico

Personalised recommendations