Journal of Biosciences

, Volume 38, Issue 4, pp 677–684 | Cite as

A brief history of Frankia and actinorhizal plants meetings




Actinorhizal plants ecological role Frankia isolation meetings 


  1. Akkermans ADL, Baker DD, Huss-Danell K and Tjepkema JD 1984 Preface. Plant Soil 78 ix–xCrossRefGoogle Scholar
  2. Akkermans ADL and Hirsch AM 1997 A reconsideration of terminology in Frankia research: a need for congruence. Physiol. Plant. 99 574–578CrossRefGoogle Scholar
  3. Alloisio N, Félix S, Maréchal J, Pujic P, Rouy Z, Vallenet D, Medigue C and Normand P 2007 Frankia alni proteome under nitrogen-fixing and nitrogen-replete conditions. Physiol. Plant. 13 440–453CrossRefGoogle Scholar
  4. An C, Riggsby W and Mullin B 1985 Restriction pattern analysis of genomic DNA of Frankia isolates. Plant Soil 87 43–48CrossRefGoogle Scholar
  5. Aronson D and Boyer G 1994 Growth and siderophore formation in six iron limited strains of Frankia. Soil Biol. Biochem. 26 561–567CrossRefGoogle Scholar
  6. Baker D 1987 Relationships among pure-cultured strains of Frankia based on host specificity. Physiol. Plant. 70 245–248CrossRefGoogle Scholar
  7. Baker D, Kidd G and Torrey JG 1979 Separation of actinomycete nodule endophytes from crushed nodule suspensions by Sephadex fractionation. Bot. Gaz. 140S S49–S51Google Scholar
  8. Baker D and Torrey J 1979 The isolation and cultivation of actinomycetous root nodule endophytes; in Symbiotic nitrogen fixation in the management of temperate forests (eds) JC Gordon, CT Wheeler, DA Perry and OR Corvallis (Oregon State University: Forest Research Laboratory) pp 38–56Google Scholar
  9. Baker DD and Berry A 1994 A tribute to John G. TORREY 1921–1993. Soil Biol. Biochem. 26 vii–viiiCrossRefGoogle Scholar
  10. Beijerinck MW 1888 Die Bacterien der Papilionaceen-Knöllchen. Bot. Zeitung 46 725–735Google Scholar
  11. Benoit LF and Berry AM 1997 Flavonoid-like compounds from seeds of red alder (Alnus rubra) influence host nodulation by Frankia (Actinomycetales). Physiol. Plant. 99 588–593CrossRefGoogle Scholar
  12. Benson D and Eveleigh D 1979 Ultrastructure of the nitrogen-fixing symbiont of Myrica pensylvanica L. (bayberry) root nodules. Bot. Gaz. 140S S15–S21Google Scholar
  13. Benson DR and Winship LJ 1989 Preface. Plant Soil 181 viii–ixGoogle Scholar
  14. Berg RH 1999a Cytoplasmic bridge formation in the nodule apex of actinorhizal root nodules. Can. J. Bot. 77 1351–1357Google Scholar
  15. Berg RH 1999b Frankia forms infection threads. Can. J. Bot. 77 1327–1333Google Scholar
  16. Berg RH, Langenstein B and Silvester WB 1999 Development in the Datisca-Coriaria nodule type. Can. J. Bot. 77 1334–1350Google Scholar
  17. Berry AM, Harriott OT, Moreau RA, Osman SF, Benson DR and Jones AD 1993 Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc. Nat. Acad. Sci. USA 90 6091–6094PubMedCrossRefGoogle Scholar
  18. Berry AM, Mendoza-Herrera A, Guo Y-Y, Hayashi J, Persson T, Barabote RD, Demchenko K, Zhang S and Pawlowski K 2011 New perspectives on nodule nitrogen assimilation in actinorhizal symbioses. Funct. Plant Biol. 38 645–652CrossRefGoogle Scholar
  19. Berry AM and Myrold DD 1997 Proceedings of the tenth international conference on Frankia and actinorhizal plants. Physiol. Plant. 99 564CrossRefGoogle Scholar
  20. Brunchorst J 1886 Uber einige Wurzelanschwellungen, besonders die jenigen von Alnus, und den Elaeagnaceen. Unters. bot. Inst. Tubingen 2 151–177Google Scholar
  21. Callaham D, Del Tredici P and Torrey J 1978 Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science 199 899–902Google Scholar
  22. Chaia EE and Myrold DD 2010 Variation of 15N natural abundance in leaves and nodules of actinorhizal shrubs in Northwest Patagonia. Symbiosis 50 97–105CrossRefGoogle Scholar
  23. Chatarpaul L, Chakravarty P and Subramaniam P 1989 Studies in tetrapartite symbioses. I. Role of ecto- and endomycorrhizal fungi and Frankia on the growth performance of Alnus incana. Plant Soil 118 145–150CrossRefGoogle Scholar
  24. Clawson M, Gawronski J and Benson DR 1999 Dominance of Frankia strains in stands of Alnus incana subsp. rugosa and Myrica pensylvanica. Can. J. Bot. 77 1203–1207Google Scholar
  25. Cournoyer B and Normand P 1992 Electropermeabilization of Frankia intact cells to plasmid DNA. Acta Oecologica 13 369–378Google Scholar
  26. Dawson JO 1999 Foreword. Can. J. Bot. 77. doi: 10.1139/cjb7709foreword
  27. Dawson JO, Camire C and Lalonde M 1985 Preface. Plant Soil 87 xi–xiiCrossRefGoogle Scholar
  28. Diem HG, Gauthier D and Dommergues Y 1983 An effective strain of Frankia from Casuarina sp. Can. J. Bot. 61 2815–2821CrossRefGoogle Scholar
  29. Fortunato A, Santos P, Gracxa I, Gouveia M, Martins S, Ricardo C, Pawloski K and Ribeiro A 2007 Isolation and characterization of cgchi3, a nodule-specific gene from Casuarina glauca encoding a class III chitinase. Physiol. Plant. 130 418–426CrossRefGoogle Scholar
  30. Furnholm T, Beauchemin N and Tisa LS 2012 Development of a semi-high-throughput growth assay for the filamentous actinobacteria Frankia. Arch. Microbiol. 194 13–20PubMedCrossRefGoogle Scholar
  31. Gardes M and Lalonde M 1987 Identification and subgrouping of Frankia strains using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Physiol. Plant. 70 237–244CrossRefGoogle Scholar
  32. Gauthier D, Diem H and Dommergues Y 1981 In vitro nitrogen fixation by two actinomycete strains isolated from Casuarina nodules. Appl. Environ. Microbiol. 41 306–308PubMedGoogle Scholar
  33. Gherbi H, Duhoux E, Franche C, Pawlowski K, Nasser A, Berry AM and Bogusz D 1997 Cloning of a full-length symbiotic hemoglobin cDNA and in situ localization of the corresponding mRNA in Casuarina glauca root nodule. Physiol. Plant. 99 608–616CrossRefGoogle Scholar
  34. Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Peret B, Laplaze L, Franche C, Parniske M and Bogusz D 2008 SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proc. Natl. Acad. Sci. USA 105 4928–4932PubMedCrossRefGoogle Scholar
  35. Ghodhbane-Gtari F, Essoussi I, Chattaoui M and Chouaia B 2010 Isolation and characterization of non-Frankia actinobacteria from root nodules of Alnus glutinosa, Casuarina glauca and Elaeagnus angustifolia. Symbiosis 50 51–57CrossRefGoogle Scholar
  36. Girgis M, Ishac Y, Diem H and Dommergues Y 1992 Selection of salt tolerant Casuarina glauca and Frankia. Acta Oecologica 13 443–451Google Scholar
  37. Goetting-Minesky MP and Mullin BC 1994 Differential gene expression in an actinorhizal symbiosis evidence for a nodule-specific cysteine proteinase. Proc. Natl. Acad. Sci. USA 91 9891–9895PubMedCrossRefGoogle Scholar
  38. Gordon JC and Dawson JO 1979 Potential uses of nitrogen-fixing trees and shrubs in commercial forestry. Bot. Gaz. 140S S88–S90Google Scholar
  39. Gordon JC, Wheeler CT and Perry DA 1979 Introduction; in Symbiotic nitrogen fixation in the management of temperate forests (eds) JC Gordon, CT Wheeler, DA Perry and OR Corvallis (Oregon State University: Forest Research Laboratory) p 1Google Scholar
  40. Goyal AK, Basistha BC, Sen A and Middha SK 2011 Antioxidant profiling of Hippophae salicifolia growing in sacred forests of Sikkim, India. Funct. Plant Biol. 138 697–701CrossRefGoogle Scholar
  41. Gtari M, Ghodhbane-Gtari F, Nouioui I, Beauchemin N and Tisa LS 2012 Phylogenetic perspectives of nitrogen-fixing actinobacteria. Arch. Microbiol. 194 3–11PubMedCrossRefGoogle Scholar
  42. Guan C, Akkermans ADL, van Kammen A, Bisseling T and Pawlowski K 1997 ag13 is expressed in Alnus glutinosa nodules in infected cells during endosymbiont degradation in the nodule pericycle. Physiol. Plant. 99 601–607CrossRefGoogle Scholar
  43. Haansuu JP, Klika KD, Soderholm PP, Ovcharenko VV, Pihlaja K, Haahtela KK and Vuorela PM 2001 Isolation and biological activity of frankiamide. J. Ind. Microbiol. Biotechnol. 27 62–66PubMedCrossRefGoogle Scholar
  44. Hahn D, Dorsch M, Stackebrandt E and Akkermans ADL 1989 Synthetic oligonucleotide probes for identification of Frankia strains. Plant Soil 118 211–219CrossRefGoogle Scholar
  45. Hammad Y, Nalin R, Marechal J, Fiasson K, Pepin R, Berry AM, Normand P and Domenach A-M 2003 A possible role for phenylacetic acid (PAA) in Alnus glutinosa nodulation by Frankia. Plant Soil 254 193–205CrossRefGoogle Scholar
  46. Hocher V, Alloisio N, Auguy F, Fournier P, Doumas P, Pujic P, Gherbi H, Queiroux C, Da Silva C, Wincker P, Normand P and Bogusz D 2011 Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol. 156 1–12CrossRefGoogle Scholar
  47. Horriere F 1984 In vitro physiological approach to classification of Frankia isolates of 'the Alnus group' based on urease, protease and ß-glucosidase activities. Plant Soil 78 7–13CrossRefGoogle Scholar
  48. Huss-Danell K and Wheeler CT 1987 Frankia and actinorhizal plants. Physiol. Plant. 70 235Google Scholar
  49. Jeong S-C and Myrold DD 1999 Genomic fingerprinting of Frankia microsymbionts from Ceanothus copopulations using repetitive sequences and polymerase chain reactions. Can. J. Bot. 77 1220–1230Google Scholar
  50. Klemmedson JO 1979 Ecological importance of actinomycete-nodulated plants in the western United States. Bot. Gaz. 140S S91–S96Google Scholar
  51. Kohls S, van Kessel C, Baker D, Grigal D and Lawrence D 1994 Assessment of N2 fixation and N cycling by Dryas along a chronosequence within the forelands of the Athabasca Glacier, Canada. Soil Biol. Biochem. 26 623–632CrossRefGoogle Scholar
  52. Krumholz GD, Chval MS, McBride MJ and Tisa LS 2003 Germination and physiological properties of Frankia spores. Plant Soil 254 57–67CrossRefGoogle Scholar
  53. Lalonde M 1979 Immunological and ultrastructural demonstration of nodulation of the European Alnus glutinosa (L.) Gaertn. host plant by an actinomycetal isolate from the North American Comptonia peregrina (L.) Coult. root nodule. Bot. Gaz. 140S S35–S43Google Scholar
  54. Lalonde M and Calvert H 1979 Production of Frankia hyphae and spores as an infective inoculant for Alnus species; in Symbiotic nitrogen fixation in the management of temperate forests (eds) JC Gordon, CT Wheeler, DA Perry and OR Corvallis (Oregon State University: Forest Research Laboratory) pp 95–110Google Scholar
  55. Lechevalier M 1984 The taxonomy of the genus Frankia. Plant Soil 78 1–6CrossRefGoogle Scholar
  56. Lechevalier M and Ruan J 1984 Physiology and chemical diversity of Frankia spp. isolated from nodules of Comptonia peregrina (L.) Coult. and Ceanothus americanus L. Plant Soil 78 15–22CrossRefGoogle Scholar
  57. Lumini E and Bosco M 1999 Polymerase chain reaction - restriction fragment length polymorphisms for assessing and increasing biodiversity of Frankia culture collections. Can. J. Bot. 77 1261–1269Google Scholar
  58. Lumini E, Bosco M, Puppi G, Isopi R, Frattegiani M, Buresti E and Favilli F 1994 Field performance of Alnus cordata Loisel (italian alder) inoculated with Frankia and VA-mycorrhizal strains in mine spoil afforestation plots. Soil Biol. Biochem. 26 659–661CrossRefGoogle Scholar
  59. Mastronunzio JE and Benson DR 2010 Wild nodules can be broken: proteomics of Frankia in field-collected root nodules. Symbiosis 50 13–26CrossRefGoogle Scholar
  60. Niemann JM, Tjepkema JD and Tisa LS 2005 Identification of the truncated hemoglobin gene in Frankia. Symbiosis 39 83–90Google Scholar
  61. Normand P 2003 Introduction. Plant Soil 254 viiGoogle Scholar
  62. Normand P, Fernandez MP, Simonet P and Domenach AM 1992 Introduction to the proceedings of the 8th Frankia and Actinorhizal Plants congress. Acta Oecologica 13 367–368Google Scholar
  63. Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E, Bassi CA, Berry AM, et al. 2007 Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res. 17 7–15PubMedCrossRefGoogle Scholar
  64. Paschke M, Dawson J and David M 1989 Soil nitrogen mineralization in plantations of Juglans nigra interplanted with actinorhizal Elaeagnus umbellata or Alnus glutinosa. Plant Soil 118 33–42CrossRefGoogle Scholar
  65. Paschke MW and Dawson JO 1992 Frankia abundance in soils beneath Betula nigra and other non-actinorhizal woody plants. Acta Oecologica 13 407–416Google Scholar
  66. Pawlowski K 1997 Nodule-specific gene expression. Physiol. Plant. 99 617–631CrossRefGoogle Scholar
  67. Périnet P, Brouillette J, Fortin J and Lalonde M 1985 Large scale inoculations of actinorhizal plants with Frankia. Plant Soil 87 175–183CrossRefGoogle Scholar
  68. Pommer E 1956 Beiträge zur Anatomie und Biologie der Wurzelknöllchen von Alnus glutinosa Gaertn. Flora 14 603–634Google Scholar
  69. Pommer E 1959 Uber die Isolierung des Endophyten aus den Wurzelknöllchen Alnus glutinosa Gaertn. und über erfolgreiche Re-Infektionsversuche. Ber. Deutsch Botan. Gesell. 72 138–150Google Scholar
  70. Prakash R and Cummings B 1988 Creation of novel nitrogen-fixing actinomycetes by protoplast fusion of Frankia and Streptomyces. Plant Mol. Biol. 10 281–289CrossRefGoogle Scholar
  71. Resch H 1980 Utilization of Red Alder in the pacific Northwest. For. Prod. J. 30 21–26Google Scholar
  72. Ribeiro A, Akkermans ADL, van Kammen A, Bisseling T and Pawlowski K 1995 A nodule-specific gene encoding a subtilisin-like protease is expressed in early stages of actinorhizal nodule development. Plant Cell 7 785–794PubMedGoogle Scholar
  73. Ribeiro A, Berry AM, Pawlowski K and Santos P 2011 Actinorhizal plants. Funct. Plant Biol. 38 v–viiGoogle Scholar
  74. Ritchie NJ and Myrold DD 1999 Phylogenetic placement of uncultured Ceanothus microsymbionts using 16S rRNA gene sequences. Can. J. Bot. 77 1208–1213Google Scholar
  75. Santos CL and Tavares F 2012 A step further on Frankia biology. Arch. Microbiol. 194 1–2PubMedCrossRefGoogle Scholar
  76. Schwintzer CR and Tjepkema JD 2005 Effect of oxygen concentration on growth and hemoglobin production in Frankia. Symbiosis 39 77–82Google Scholar
  77. Sellstedt A and Huss-Danell K 1984 Nitrogen fixation and relative efficiency of nitrogenase in Alnus incana grown in different cultivation systems. Plant Soil 78 147–158CrossRefGoogle Scholar
  78. Sellstedt A and Mattsson U 1994 Hydrogen metabolism in Casuarina Frankia immunolocalization of nitrogenase and hydrogenase. Soil Biol. Biochem. 26 583–592CrossRefGoogle Scholar
  79. Sellstedt A, Normand P and Dawson JO 2007 Frankia – the friendly bacteria – infecting actinorhizal plants. Physiol. Plant. 130 315–317CrossRefGoogle Scholar
  80. Sellstedt A and Winship L 1987 Hydrogen metabolism of Casuarina root nodules: A comparison of two inoculum sources. Physiol. Plant 70 367–372CrossRefGoogle Scholar
  81. Silvester W and Harris S 1994 Preface. Soil Biol. Biochem. 26 vCrossRefGoogle Scholar
  82. Simonet P, Normand P, Moiroud A and Lalonde M 1985 Restriction enzyme digestion patterns of Frankia plasmids. Plant Soil 87 49–60CrossRefGoogle Scholar
  83. Stowers M and Smith J 1985 Inoculation and production of container-grown red alder seedlings. Plant Soil 87 153–160CrossRefGoogle Scholar
  84. Svistoonoff S, Gherbi H, Nambiar-Veetil M and Zhong C 2010 Contribution of transgenic Casuarinaceae to our knowledge of the actinorhizal symbioses. Symbiosis 50 3–11CrossRefGoogle Scholar
  85. Swensen SM and Mullin BC 1997 Phylogenetic relationships among actinorhizal plants. The impact of molecular systematics and implications for the evolution of actinorhizal symbioses. Physiol. Plant. 99 565–573CrossRefGoogle Scholar
  86. Tavares F, Santos CL and Sellstedt A 2007 Reactive oxygen species in legume and actinorhizal nitrogen-fixing symbioses: the microsymbiont’s responses to an unfriendly reception. Physiol. Plant. 130 344–356CrossRefGoogle Scholar
  87. Tisa L, McBride M and Ensign JC 1983 Studies of growth and morphology of Frankia strains EAN1pec, EuI1c, CpI1, and ACN1AG. Can. J. Bot. 61 2768–2773CrossRefGoogle Scholar
  88. Tisa LS 2005 Preface. Symbiosis 39 59Google Scholar
  89. Tisa LS, Chval MS, Krumholz GD and Richards J 1999 Antibiotic resistance patterns of Frankia strains. Can. J. Bot. 77 1257–1260Google Scholar
  90. Tjepkema J, Ormerod W and Torrey JG 1980 Vesicle formation and acetylene reduction activity in Frankia sp. CpI1 cultured in defined nutrient media. Nature 287 633–635Google Scholar
  91. Tobita H, Uemura A, Kitao M, Kitaoka S, Maruyama Y and Utsugi H 2011 Effects of elevated atmospheric carbon dioxide, soil nutrients and water conditions on photosynthetic and growth responses of Alnus hirsuta. Funct. Plant Biol. 138 702–710CrossRefGoogle Scholar
  92. Torrey JG 1987 Endophyte sporulation in root nodules of actinorhizal plants. Physiol. Plant. 70 279–288Google Scholar
  93. Torrey JG and Tjepkema JD 1979 Symbiotic nitrogen fixation in actinomycete-nodulated plants. Preface and program. Bot. Gaz. 140S Si–SvGoogle Scholar
  94. Torrey JG and Tjepkema JD 1983 International conference on the biology of Frankia. Introduction. Can. J. Bot. 61 2765–2767Google Scholar
  95. Varghese R, Chauhan VS and Misra AK 2003. Evolutionary implications of nucleotide sequence relatedness between Alnus nepalensis and Alnus glutinosa and also between corresponding Frankia microsymbionts. Plant Soil 254 219–227CrossRefGoogle Scholar
  96. Van Ghelue M, Lovaas E, Ringo E and Solheim B 1997 Early interactions between Alnus glutinosa and Frankia strain ArI3. Production and specificity of root hair deformation factor(s). Physiol. Plant. 99 579–587CrossRefGoogle Scholar
  97. Wall LG, Chaia E and Dawson JO 2010 Special Volume devoted to the 15th International Frankia and Actinorhizal Plant Meeting. Symbiosis 50 1–2CrossRefGoogle Scholar
  98. Wheeler CT, Crozier A and Sandberg G 1984 The biosynthesis of indole-3-acetic acid by Frankia. Plant Soil 78 99–104Google Scholar
  99. Winship L and Chaudhary A 1979 Nitrogen fixation by Datisca glomerata : a new addition to the list of actinorhizal diazotrophic plants; in Symbiotic nitrogen fixation in the management of temperate forests (eds) JC Gordon, CT Wheeler, DA Perry and OR Corvallis (Oregon State University: Forest Research Laboratory) p 485Google Scholar
  100. Yanthan M, Biate D and Misra AK 2011 Taxonomic resolution of actinorhizal Myrica species from Meghalaya (India) through nuclear rDNA sequence analyses. Funct. Plant Biol. 38 738–746CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2013

Authors and Affiliations

  1. 1.Université Lyon 1, Université de Lyon, CNRS, Ecologie Microbienne UMR5557VilleurbanneFrance

Personalised recommendations