Advertisement

Journal of Biosciences

, Volume 38, Issue 4, pp 719–726 | Cite as

What stories can the Frankia genomes start to tell us?

  • Louis S TisaEmail author
  • Nicholas Beauchemin
  • Maher Gtari
  • Arnab Sen
  • Luis G Wall
Article

Abstract

Among the Actinobacteria, the genus Frankia is well known for its facultative lifestyle as a plant symbiont of dicotyledonous plants and as a free-living soil dweller. Frankia sp. strains are generally classified into one of four major phylogenetic groups that have distinctive plant host ranges. Our understanding of these bacteria has been greatly facilitated by the availability of the first three complete genome sequences, which suggested a correlation between genome size and plant host range. Since that first report, eight more Frankia genomes have been sequenced. Representatives from all four lineages have been sequenced to provide vital baseline information for genomic approaches toward understanding these novel bacteria. An overview of the Frankia genomes will be presented to stimulate discussion on the potential of these organisms and a greater understanding of their physiology and evolution.

Keywords

Actinobacteria actinorhizal symbiosis genomes nitrogen fixation 

Notes

Acknowledgements

This project (LST) was supported in part by Agriculture and Food Research Initiative Grant 2010–65108–20581 from the USDA National Institute of Food and Agriculture, Hatch Grant NH530, and The College of Life Sciences and Agriculture at the University of New Hampshire, Durham, NH. MG was supported in part by a Visiting Scientist Program administered by the NH AES at the University of New Hampshire.

References

  1. Alloisio N, Felix S, Marechal J, Pujic P, Rouy Z, Vallenet D, Medigue C and Normand P 2007 Frankia alni proteome under nitrogen-fixing and nitrogen-replete conditions. Physiol. Plantarum 130 440–453CrossRefGoogle Scholar
  2. Alloisio N, Queiroux C, Fournier P, Pujic P, Normand P, Vallenet D, Medigue C, et al. 2010 The Frankia alni Symbiotic Transcriptome. Mol. Plant Microbe In. 23 593–607CrossRefGoogle Scholar
  3. Bagnarol E, Popovici J, Alloisio N, Marechal J, Pujic P, Normand P, and Fernandez MP 2007 Differential Frankia protein patterns induced by phenolic extracts from Myricaceae seeds. Physiol. Plantarum 130 380–390CrossRefGoogle Scholar
  4. Baker D, Newcomb W, and Torrey JG 1980 Characterization of an ineffective actinorhizal microsymbiont, Frankia sp. EuI1c (Actinomycetales). Can. J. Microbiol. 26 1072–1089PubMedCrossRefGoogle Scholar
  5. Beauchemin N, Gtari M, Ghodhbane-Gtari F, Furnholm T, Sen A, Wall L, Tavares F, et al. 2012 What can the genome of an infective ineffective (Fix-) Frankia. Strain (EuI1c) that is able to form nodules with its host plant tell us about actinorhizal symbiosis and Frankia evolution. The 112th General Meeting of the American Society for Microbiology American Society for Microbiology, San Francisco, CAGoogle Scholar
  6. Benson DR and Silvester WB 1993 Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol. Mol. Biol. Rev. 57 293–319Google Scholar
  7. Bickhart DM, and Benson DR 2011 Transcriptomes of Frankia sp strain CcI3 in growth transitions. BMC Microbiol. 11 192PubMedCrossRefGoogle Scholar
  8. Bickhart DM, Gogarten JP, Lapierre P, Tisa LS, Normand P and Benson DR 2009 Insertion sequence content reflects genome plasticity in strains of the root nodule actinobacterium Frankia. BMC Genomics 10 468Google Scholar
  9. Chaia EE, Wall LG and Huss-Danell K 2010 Life in soil by the actinorhizal root nodule endophyte Frankia. A review. Symbiosis 51 201–226CrossRefGoogle Scholar
  10. Cournoyer B and Lavire C 1999 Analysis of Frankia evolution radiation using glnII sequences. FEMS Microbiol. Lett. 117 29–34Google Scholar
  11. Ghodhbane-Gtari F, Beauchemin N, Bruce D, Chain P, Chen A, Walston Davenport K, Deshpande S, et al. 2013 Draft Genome sequence of Frankia sp. strain CN3 , an atypical, non-infective (Nod-) ineffective (Fix-) isolate from Coriaria nepalensis. Genome Announc. 1 e00085-13Google Scholar
  12. Ghodhbane-Gtari F, Nouioui I, Chair M, Boudabous A and Gtari M 2010 16S-23S rRNA intergenic spacer region variability in the genus Frankia. Microb. Ecol. 60 487–495PubMedCrossRefGoogle Scholar
  13. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C and Salzberg SL 2004 Versatile and open software for comparing large genomes. Genome Biol. 5 R12PubMedCrossRefGoogle Scholar
  14. Markowitz VM, Korzeniewski F, Palaniappan K, Szeto E, Werner G, Padki A, Zhao XL, Dubchak I, et al. 2006 The integrated microbial genomes (IMG) system. Nucleic Acids Res. 34 D344–D348PubMedCrossRefGoogle Scholar
  15. Mastronunzio JE, Tisa LS, Normand P and Benson DR 2008 Comparative secretome analysis suggests low plant cell wall degrading capacity in Frankia symbionts. BMC Genomics 9 47PubMedCrossRefGoogle Scholar
  16. Mastronunzio JE and Benson DR 2010 Wild nodules can be broken: proteomics of Frankia in field-collected root nodules. Symbiosis 50 13–26CrossRefGoogle Scholar
  17. Mastronunzio JE, Huang Y and Benson DR 2009 Diminished exoproteome of Frankia spp. in culture and symbiosis. Appl. Environ. Microbiol. 75 6721–6728PubMedCrossRefGoogle Scholar
  18. Niemann J and Tisa LS 2008 Nitric Oxide and Oxygen Regulate Truncated Hemoglobin Gene Expression in Frankia Strain CcI3. J. Bacteriol. 190 7864–7867PubMedCrossRefGoogle Scholar
  19. Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E, Bassi CA, Berry AM, et al. 2007a Genome characteristics of facultatively symbiotic Frankia sp strains reflect host range and host plant biogeography. Genome Res. 17 7–15PubMedCrossRefGoogle Scholar
  20. Normand P, Orso S, Cournoyer B, Jeannin P, Chapelon C, Dawson JO, Evtushenko L and Mirsra AK 1996 Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int. J. Syst. Bacteriol. 46 1–9PubMedCrossRefGoogle Scholar
  21. Normand P, Queiroux C, Tisa LS, Benson DR, Rouy Z, Cruveiller S and Medigue C 2007b Exploring the genomes of Frankia. Physiol. Plantarum 130 331–343CrossRefGoogle Scholar
  22. Nouioui I, Beauchemin N, Cantor MN, A. Chen A, Detter JC, Furnholm T, Ghodhbane-Gtari F, et al. 2013 Draft Genome sequence of Frankia sp. strain BMG5.12, a nitrogen-fixing actinobacterium isolated from Tunisian soils. Genome Announc. 1 e00468-13Google Scholar
  23. Nouioui I, Ghodhbane-Gtari F, Beauchemin NJ, Tisa LS, and Gtari M 2011 Phylogeny of members of the Frankia genus based on gyrB, nifH and glnII sequences. Anton. van Leeuw. 100 579–587Google Scholar
  24. Perrine-Walker F, Doumas P, Lucas M, Vaissayre V, Beauchemin NJ, Band LR, Chopard J, et al. 2010 Auxin carriers localization drives auxin accumulation in plant cells infected by Frankia in Casuarina glauca actinorhizal nodules. Plant Physiol. 154:1372–1380PubMedCrossRefGoogle Scholar
  25. Persson T, Benson DR, Normand P, Vanden Heuvel B, Pujic P, Chertkov O, Teshima H, et al. 2011 Genome sequence of “Candidatus Frankia datiscae” Dg1, the uncultured microsymbiont from nitrogen-fixing root nodules of the Dicot Datisca glomerata. J. Bacteriol. 193 7017–7018PubMedCrossRefGoogle Scholar
  26. Popovici J, Comte G, Bagnarol E, Alloisio N, Fournier P, Bellvert F, Bertrand C and Fernandez MP 2010 Differential effects of rare specific flavonoids on compatible and incompatible strains in the Myrica gale-Frankia actinorhizal symbiosis. Appl. Environ. Microbiol. 76 2451–2460PubMedCrossRefGoogle Scholar
  27. Popovici J, Walker V, Bertrand C, Bellvert F, Fernandez MP and Comte G 2011 Strain specificity in the Myricaceae-Frankia symbiosis is correlated to plant root phenolics. Funct. Plant Biol. 38 682–689.CrossRefGoogle Scholar
  28. Sen A, Beauchemin N, Bruce D, Chain P, Chen A, Walston Davenport K, Deshpande S, Detter C, et al. 2013 Draft Genome sequence of Frankia sp. strain QA3 , a nitrogen-fixing actinobacterium isolated from the root nodule of Alnus nitida. Genome Announc. 1 e00103-13Google Scholar
  29. Sen A, Sur S, Bothra AK, Benson DR, Normand P and Tisa LS 2008 The implication of life style on codon usage patterns and predicted highly expressed genes for three Frankia genomes. Anton. van Leeuw. Int. 93 335–346CrossRefGoogle Scholar
  30. Sen A, Thakur S, Bothra AK, Sur S and Tisa LS 2012 Identification of TTA codon containing genes in Frankia and exploration of the role of tRNA in regulating these genes. Arch. Microbiol. 194 35–45PubMedCrossRefGoogle Scholar
  31. Schwencke J and Carú M 2001 Advances in actinorhizal symbiosis: host plant-Frankia interactions, biology, and applications in arid land reclamation. A review. Arid. Land Res. Manag. 15 285–327CrossRefGoogle Scholar
  32. Udwary DW, Gontang EA, Jones AC, Jones CS, Schultz AW, Winter JM, Yang JY, Beauchemin N, et al. 2011 Significant natural product biosynthetic potential of actinorhizal symbionts of the genus Frankia, as revealed by comparative genomic and proteomic analyses. Appl. Environ. Microbiol. 77 3617–3625PubMedCrossRefGoogle Scholar
  33. Wall LG 2000 The actinorhizal symbiosis. J. Plant Growth Regul. 19 167–182PubMedGoogle Scholar
  34. Wall L, Beauchemin N, Cantor MN, Chaia E, Chen A, Detter JC, Furnholm T, et al. 2013 Draft Genome sequence of Frankia sp. strain BCU110501, a nitrogen-fixing actinobacterium isolated from nodules of Discaria trinevis. Genome Announc. 1 e00503-13PubMedGoogle Scholar

Copyright information

© Indian Academy of Sciences 2013

Authors and Affiliations

  • Louis S Tisa
    • 1
    Email author
  • Nicholas Beauchemin
    • 1
  • Maher Gtari
    • 2
  • Arnab Sen
    • 3
  • Luis G Wall
    • 4
  1. 1.Department of Molecular, Cellular, and Biomedical SciencesUniversity of New HampshireDurhamUSA
  2. 2.Microorganisms and Active Biomolecules LaboratoryUniversity of Tunis-El ManarTunisTunisia
  3. 3.Bioinformatics Facility, Department of BotanyUniversity of North BengalSiliguriIndia
  4. 4.Department of Science and TechnologyUniversity of QuilmesBernalArgentina

Personalised recommendations