Skip to main content
Log in

What history tells us XXXII. The long and tortuous history of epigenetic marks

  • Series
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allfrey VG, Littau VC and Mirsky AE 1963 On the role of histones in regulating ribonucleic acid synthesis in the cell nucleus. Proc. Natl. Acad. Sci. USA 49 414–421

    Google Scholar 

  • Allfrey VG, Faulkner R and Mirsky AE 1964 Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. USA 51 786–794

    Google Scholar 

  • Allfrey VG and Mirsky AE 1964 Structural modifications of histones and their possible role in the regulation of RNA synthesis. Science 144 559

    Article  PubMed  CAS  Google Scholar 

  • Arber W and Linn S 1969 DNA modification and restriction. Annu. Rev. Biochem. 38 467–500

    Google Scholar 

  • Behe M and Felsenfeld G 1981 Effects of methylation on a synthetic polynucleotide: the B-Z transition in poly(dG-m5dC).poly(dG-m5dC). Proc. Natl. Acad. Sci. USA 78 1619–1623

    Article  CAS  Google Scholar 

  • Britten RJ and Davidson EH 1969 Gene regulation for higher cells: a theory. Science 165 349–357

    Article  PubMed  CAS  Google Scholar 

  • Brown S W 1966 Heterochromatin. Science 151 417–425

    Article  PubMed  CAS  Google Scholar 

  • Davidson EH 1968 Gene activity in early development (New York: Academic Press)

    Google Scholar 

  • Doerfler W 1983 DNA methylation and gene activity. Annu. Rev. Biochem. 52 93–124

  • Felsenfeld G and McGhee J 1982 Methylation and gene control. Nature 296 602–603

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AD, Allis CD and Bernstein E 2007 Epigenetics: a landscape takes shape. Cell 128 635–638

    Article  PubMed  CAS  Google Scholar 

  • Gurdon JB 1962 The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol. 10 622–640

  • Holliday R and Pugh JE 1975 DNA modifications mechanisms and gene activity during development. Science 187 226–232

    Article  PubMed  CAS  Google Scholar 

  • Holliday R 1987 The inheritance of epigenetic defects. Science 238 163–170

    Article  PubMed  CAS  Google Scholar 

  • Holliday R 1994 Epigenetics: an overview. Dev. Genet. 15 453–457

  • Huang RC and Bonner J 1962 Histone, a suppressor of chromosomal RNA synthesis. Proc. Natl. Acad. Sci. USA 48 1216–1222

    Google Scholar 

  • Jackson DA, Symons RH and Berg P 1972 Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 molecules containing lambda phage genes and the Galactose operon of Escherichia coli. Proc. Natl. Acad. Sci. USA 69 2904–2909

    Google Scholar 

  • Kornberg RD 1974 Chromatin structure: a repeating unit of histones and DNA. Science 184 868–871

    Article  PubMed  CAS  Google Scholar 

  • Li E, Beard C and Jaenisch R 1993 Role for DNA methylation in genomic imprinting. Nature 366 362–365

    Article  PubMed  CAS  Google Scholar 

  • Lyon M 1968 Chromosomal and subchromosomal inactivation. Annu. Rev. Genet. 2 31–52

  • Morange M 2007 Z-DNA: when nature is not opportunistic. J. Biosci. 32 657–661

    Google Scholar 

  • Olins AL and Olins DE 1974 Spheroid chromatin units (ν bodies). Science 183 330–332

    Google Scholar 

  • Olins DE and Olins AL 2003 Chromatin history: our view from the bridge. Nature Reviews/Molecular Cell Biology 4 809–814

    Google Scholar 

  • Reik W, Collick A, Norris ML, Barton SC and Surani MA 1987 Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature 328 248–251

    Article  PubMed  CAS  Google Scholar 

  • Richmond TJ, Finch JT, Rushton B, Rhodes D and Klug A 1984 Structure of the nucleosome core particle at 7 A resolution. Nature 311 532–537

    Article  PubMed  CAS  Google Scholar 

  • Riggs AD 1975 X inactivation, differentiation, and DNA methylation. Cytogenet. Cell Genet. 14 9–25

    Google Scholar 

  • Sager R and Kitchin R 1975 Selective silencing of eukaryotic DNA. Science 189 426–433

    Article  PubMed  CAS  Google Scholar 

  • Scarano E, Iaccarino M, Grippo P and Parisi E 1967 The heterogeneity of thymine methyl group origin in DNA pyrimidine isostichs of developing sea urchin embryos. Proc. Natl. Acad. Sci. USA 57 1394–1400

    Google Scholar 

  • Selker EU 1990 DNA methylation and chromatin structure: a view from below. Trends Biochem. Sci. 15 103–107

    Google Scholar 

  • Srinivasan PR and Borek E 1964 Enzymatic alteration of nucleic acid structure. Science 145 548–553

    Article  PubMed  CAS  Google Scholar 

  • Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, et al. 2011 DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480 490–495

    PubMed  CAS  Google Scholar 

  • Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, et al. 2012 The accessible chromatin landscape of the human genome. Nature 489 75–82

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I am indebted to David Marsh for his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Morange.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morange, M. What history tells us XXXII. The long and tortuous history of epigenetic marks. J Biosci 38, 451–454 (2013). https://doi.org/10.1007/s12038-013-9354-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-013-9354-3

Keywords

Navigation