Skip to main content

Advertisement

Log in

The multiple faces of calcineurin signaling in Caenorhabditis elegans: Development, behaviour and aging

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Calcineurin, a well-conserved protein phosphatase 2B (PP2B), is a Ca2+-calmodulin–dependent serine/threonine protein phosphatase that is known to be involved in a myriad of cellular processes and signal transduction pathways. The biological role of calcineurin has been extensively studied in diverse groups of organisms. Homologues of mammalian and Drosophila calcineurin subunits exist in the nematode, Caenorhabditis elegans. The C. elegans counterpart of the catalytic subunit, calcineurin A, cna-1/tax-6, and the regulatory subunit, calcineurin B, cnb-1, are known to express ubiquitously in multiple tissues including neurons. The characterization of C. elegans calcineurin mutants facilitates identification of its physiological functions and signaling pathways. Genetic interactions between cna-1/tax-6 and cnb-1 mutants with a number of mutants involved in several signaling pathways have exemplified the pivotal role of calcineurin in regulating nematode development, behaviour and lifespan (aging). The present review has been aimed to provide a succinct summary of the multiple functions of calcineurin in C. elegans relating to its development, fertility, proliferation, behaviour and lifespan. Analyses of cna-1/tax-6 and cnb-1 interacting proteins and regulators of the phosphatase in this fascinating worm model have an immense scope to identify potential drug targets in various parasitic nematodes, which cause many diseases inflicting huge economic loss; and also for many human diseases, particularly neurodegenerative and myocardial diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Ahn DH, Singaravelu G, Lee S, Ahnn J and Shim YH 2006 Functional and phenotypic relevance of differentially expressed proteins in calcineurin mutants of Caenorhabditis elegans. Proteomics 6 1340–1350

    PubMed  CAS  Google Scholar 

  • Ahn JH and Blackwell TK 2003 SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev. 17 1882−1893

    Google Scholar 

  • Aladzsity I, Toth ML, Sigmond T, Szabo E, Bicsak B, Barna J, Regos A, Orosz L, Kovacs AL and Vellai T 2007 Autophagy genes unc-51 and bec-1 are required for normal cell size in Caenorhabditis elegans. Genetics 177 655–660

    PubMed  CAS  Google Scholar 

  • Baksh S, DeCaprio JA and Burakoff SJ 2000 Calcineurin regulation of the mammalian G0/G1 checkpoint element, cyclin dependent kinase 4. Oncogene 19 2820−2827

    PubMed  CAS  Google Scholar 

  • Bandyopadhyay J, Lee J and Bandyopadhyay A 2004 Regulation of calcineurin, a calcium/calmodulin-dependent protein phosphatase, in C. elegans. Mol. Cells 18 10−16

    CAS  Google Scholar 

  • Bandyopadhyay J, Lee J, Lee J, Lee JI, Yu JR, Jee C, Cho JH, Jung S, Lee MH, Zannoni S, Singson A, Kim DH, Koo HS and Ahnn J 2002 Calcineurin, a calcium/calmodulin-dependent protein phosphatase, is involved in movement, fertility, egg laying, and growth in Caenorhabditis elegans. Mol. Biol. Cell 13 3281–3293

    PubMed  CAS  Google Scholar 

  • Bastiani CA, Gharib S, Simon SMI and Sternberg PW 2003 Caenorhabditis elegans Galphaq regulates egg-laying 26ehaviour via a PLCbeta-independent and serotonin-dependent signaling pathway and likely functions both in the nervous system and in muscle. Genetics 165 1805–1822

    PubMed  CAS  Google Scholar 

  • Baumgartel K and Mansuy IM 2012 Neural functions of calcineurin in synaptic plasticity and memory. Learn. Mem. 19 375−384

    PubMed  CAS  Google Scholar 

  • Beg AA and Jorgensen EM 2003 EXP-1 is an excitatory GABA-gated cation channel. Nat. Neurosci. 6 1145−1152

    PubMed  CAS  Google Scholar 

  • Berdichevsky A, Viswanathan M, Horvitz HR and Guarente L 2006 C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend lifespan. Cell 125 1165–1177

    PubMed  CAS  Google Scholar 

  • Brenner S 1974 The genetics of Caenorhabditis elegans. Genetics 77 71–94

    PubMed  CAS  Google Scholar 

  • Bretscher AJ, Busch KE and De Bono M 2008 A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 105 8044−8049

    PubMed  CAS  Google Scholar 

  • Brooks DR, Appleford PJ, Murray L and Isaac RE 2003 An essential role in molting and morphogenesis of Caenorhabditis elegans for ACN-1, a novel member of the angiotensin-converting enzyme family that lacks a metallopeptidase active site. J. Biol. Chem. 278 52340–52346

    PubMed  CAS  Google Scholar 

  • Bush E, Fielitz J, Melvin L, Martinez-Arnold M, McKinsey TA, Plichta R and Olson EN 2004 A small molecular activator of cardiac hypertrophy uncovered in a chemical screen for modifiers of the calcineurin signaling pathway. Proc. Natl. Acad. Sci. USA 101 2870–2875

    PubMed  CAS  Google Scholar 

  • Butler JA, Ventura N, Johnson TE and Rea SL 2010 Long-lived mitochondrial (Mit) mutants of Caenorhabditis elegans utilize a novel metabolism. FASEB J. 24 4977−4988

    PubMed  CAS  Google Scholar 

  • Cheung BH, Cohen M, Rogers C, Albavram O and De Bono M 2005 Experience-dependent modulation of C. elegans behavior by ambient oxygen. Curr. Biol. 15 905−917

    PubMed  CAS  Google Scholar 

  • Clapham DE 1995 Calcium signaling. Cell 80 259−268

    PubMed  CAS  Google Scholar 

  • Crabtree GR 1999 Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT. Cell 96 611−614

    PubMed  CAS  Google Scholar 

  • Crabtree GR 2001 Calcium, calcineurin and the control of transcription. J. Biol. Chem. 276 2313−2316

    PubMed  CAS  Google Scholar 

  • Cuervo AM 2008 Autophagy and aging: keeping that old broom working. Trends Genet. 24 604−612

    PubMed  CAS  Google Scholar 

  • Dong MQ, Venable JD, Au N, Xu T, Park SK, Cociorva D, Johnson JR, Dillin A and Yates JR 3rd 2007 Quantitative mass spectrometry identifies insulin signaling targets in C. elegans. Science 317 660−663

    PubMed  CAS  Google Scholar 

  • Donohoe DR, Jarvis RA, Weeks K, Aamodt EJ and Dwver DS 2009 Behavioral adaptation in C. elegans produced by antipsychotic drugs requires serotonin and is associated with calcium signaling and calcineurin inhibition. Neurosci. Res. 64 280−289

    PubMed  CAS  Google Scholar 

  • Dorman JB, Albinder B, Shrover T and Kenyon C 1995 The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141 1399−1406

    PubMed  CAS  Google Scholar 

  • Dwivedi M, Song HO and Ahnn J 2009 Autophagy genes mediate the effect of calcineurin on life span in C. elegans. Autophagy 5 604–607

    PubMed  CAS  Google Scholar 

  • Flanagan WM, Corthesy B, Bram RJ and Crabtree GR 1991 Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature 352 803–807

    PubMed  CAS  Google Scholar 

  • Flemming AJ, Shen ZZ, Cunha A, Emmons SW and Leroi AM 2000 Somatic polyploidization and cellular proliferation drive body size evolution in nematodes. Proc. Natl. Acad. Sci. USA 97 5285–5290

    PubMed  CAS  Google Scholar 

  • Fuentes JJ, Genesca L, Kingsbury TJ, Cunningham KW, Perez-Riba M, Estivill X and dela Luna S 2000 DSCR1, overexpressed in Down Syndrome, is an inhibitor of calcineutin-mediated signaling pathways. Hum. Mol. Genet. 9 1681−1690

    PubMed  CAS  Google Scholar 

  • Garcia-Cozar FJ, Okamura H, Aramburu JF, Shaw KT, Pelletier L, Showalter R, Villafranca E and Rao A 1998 Two-site interaction of nuclear factor of activated T cells with activated calcineurin. J. Biol. Chem. 273 23877−23883

    PubMed  CAS  Google Scholar 

  • Ghosh R and Emmons SW 2008 Episodic swimming behavior in the nematode C. elegans. J. Exp. Biol. 211 3703−3711

    PubMed  Google Scholar 

  • Ghosh R and Emmons SW 2010 Calcineurin and protein kinase G regulate C. elegans behavioral quiescence during locomotion in liquid. BMC Genet. 11 7

    PubMed  Google Scholar 

  • Gooch JL, Pergola PE, Guler RL, Abboud HE and Barnes JL 2004 Differential expression of calcineurin A isoforms in the diabetic kidney. J. Am. Soc. Nephrol. 15 1421−1429

    PubMed  CAS  Google Scholar 

  • Goto S, Yamamoto H, Fukunaga K, Iwasa T, Matsukado Y and Miyamoto E 1985 Dephosphorylation of microtubule-associated protein 2, tau factor, and tubulin by calcineurin. J. Neurochem. 45 276−283

    PubMed  CAS  Google Scholar 

  • Gottschalk A, Almedom RB, Schedletzky T, Anderson SD, Yates JR 3rd and Schaefer WR 2005 Identification and characterization of novel nicotinic receptor-associated proteins in Caenorhabditis elegans. EMBO J. 24 2566−2578

    PubMed  CAS  Google Scholar 

  • Graef IA, Gastier JM, Francke U and Crabtree GR 2001 Evolutionary relationships among Rel domains indicate functional diversification by recombination. Proc. Natl. Acad. Sci. USA 98 5740–5745

    PubMed  CAS  Google Scholar 

  • Gray JM, Karow DS, Lu H, Chang AJ, Chang JS, Ellis RE, Marletta MA and Bargmann CI 2004 Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 430 317−322

    PubMed  CAS  Google Scholar 

  • Hallam S, Singer E, Waring D and Jin Y 2000 The C. elegans NeuroD homolog cnd-1 functions in multiple aspects of motor neuron fate specification. Development 127 4239−4252

    PubMed  CAS  Google Scholar 

  • Hallem EA and Sternberg PW 2008 Acute carbon dioxide avoidance in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 105 8038−8043

    PubMed  CAS  Google Scholar 

  • Hallem EA, Spencer WC, McWhirter RD, Zeller G, Henz SR, Ratsch G, Miller DM 3rd, Horvitz HR, Sternberg PW and Ringstad N 2011 Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 108 254−259

    PubMed  CAS  Google Scholar 

  • Hars ES, Qi H, Ryazanov AG, Jin S, Cai L, Hu C and Liu LF 2007 Autophagy regulates ageing in C. elegans. Autophagy 3 93–95

    PubMed  CAS  Google Scholar 

  • Hedgecock EM and Russell RL 1975 Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 72 4061−4065

    PubMed  CAS  Google Scholar 

  • Hekimi S and Guarente L 2003 Genetics and the specificity of the aging process. Science 299 1351–1354

    PubMed  CAS  Google Scholar 

  • Hekimi S, Benard C, Branicky R, Burgess J, Hihi AK and Rea S 2001 Why only time will tell. Mech. Ageing Dev. 122 571−594

    PubMed  CAS  Google Scholar 

  • Hu J, Bae YK, Knobel KM and Barr MM 2006 Casein kinase II and calcineurin modulate TRPP function and ciliary localization. Mol. Biol. Cell 17 2200−2211

    PubMed  CAS  Google Scholar 

  • Hukema RK, Rademakers S, Dekkers MP, Burghoorn J and Jansen G 2006 Antagonistic sensory cues generate gustatory plasticity in Caenorhabditis elegans. EMBO J. 25 312−322

    PubMed  CAS  Google Scholar 

  • Hunter T 1995 Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80 225−236

    PubMed  CAS  Google Scholar 

  • Jan YN and Jan LY 1993 HLH proteins, fly neurogenesis, and vertebrate myogenesis. Cell 75 827−830

    PubMed  CAS  Google Scholar 

  • Jee C, Choi TW, Kalichamy K, Yee JZ, Song HO, Ji YJ, Lee J, Lee JI, L'Etoile ND, Ahnn J and Lee SK 2012 CNP-1 (ARRD-17), a novel substrate of calcineurin, is critical for modulation of egg-laying and locomotion in response to food and lysine sensation in Caenorhabditis elegans. J. Mol. Biol. 417 165−178

    PubMed  CAS  Google Scholar 

  • Jin Y, Hoskins R and Horvitz HR 1994 Control of type-D GABAergic neuron differentiation by C. elegans UNC-30 homeodomain protein. Nature 372 780−783

    PubMed  CAS  Google Scholar 

  • Johnson TE 2008 Caenorhabditis elegans 2007: the premier model for the study of aging. Exp. Gerontol. 43 1–4

    PubMed  CAS  Google Scholar 

  • Johnstone IL, Shafi Y and Barry JD 1992 Molecular analysis of mutations in the Caenorhabditis elegans collagen gene dpy-7. EMBO J. 11 3857–3863

    PubMed  CAS  Google Scholar 

  • Ke H and Huai Q 2003 Structures of calcineurin and its complexes with immunophilins-immunosuppressants. Biochem. Biophys. Res. Commun. 311 1095–1102

    PubMed  CAS  Google Scholar 

  • Kenyon C 2010 A pathway that links reproductive status to lifespan in Caenorhabditis elegans. Ann. N Y Acad. Sci. 1204 156−162

    PubMed  CAS  Google Scholar 

  • Kim J, Poole DS, Waggoner LE, Kempf A, Ramirez DS, Treschow PA and Schaefer WR 2001 Genes affecting the activity of nicotinic receptors involved in Caenorhabditis elegans egglaying behaviour. Genetics 157 1599–1610

    PubMed  CAS  Google Scholar 

  • Kim YH, Song HO, Ko KM, Singaravelu G, Jee C, Kang J and Ahnn J 2008 A novel calcineurin-interacting protein, CNP-3, modulates calcineurin deficient phenotypes in Caenorhabditis elegans. Mol. Cells 25 566−571

    PubMed  CAS  Google Scholar 

  • Kincaid R 1993 Calmodulin-dependent protein phosphatases from microorganisms to man. A study in structural conservatism and biological diversity. Adv. Second Messenger Phosphoprotein Res. 27 1−23

    PubMed  CAS  Google Scholar 

  • Kingsbury TJ and Cunningham KW 2000 A conserved family of calcineurin regulators. Genes Dev. 14 1595–1604

    PubMed  CAS  Google Scholar 

  • Klass MR 1983 A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech. Ageing Dev. 22 279−286

    PubMed  CAS  Google Scholar 

  • Klee CB and Krinks MH 1978 Purification of cyclic 3', 5'-nucleotide phosphodiesterase inhibitory protein by affinity chromatography on activator protein coupled to Sepharose. Biochemistry 17 120−126

    PubMed  CAS  Google Scholar 

  • Klee CB, Crouch TH and Krinks MH 1979 Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc. Natl. Acad. Sci. USA 76 6270−6273

    PubMed  CAS  Google Scholar 

  • Klee CB, Ren H and Wang X 1998 Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J. Biol. Chem. 273 13367−13370

    PubMed  CAS  Google Scholar 

  • Klionsky DJ and Emr SD 2000 Autophagy as a regulated pathway of cellular degradation. Science 290 1717–1721

    PubMed  CAS  Google Scholar 

  • Koelle MR and Horvitz HR 1996 EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell 84 115–125

    PubMed  CAS  Google Scholar 

  • Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S, Hedrick S, Xu W, Boussouar F, Brindle P, Takemori H and Montminy M 2005 The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437 1109−1111

    PubMed  CAS  Google Scholar 

  • Kovacs AL and Zhang H 2010 Role of autophagy in Caenorhabditis elegans. FEBS Lett. 584 1335−1341

    PubMed  CAS  Google Scholar 

  • Kramer JM 1997 Extracellular matrix; in C elegans II (New York: Cold Spring Harbor Laboratory Press) pp 471−500

  • Kramer JM, Johnson JJ, Edgar RS, Basch C and Roberts S 1988 The sqt-1 gene of C. elegans encodes a collagen critical for organismal morphogenesis. Cell 55 555–565

    PubMed  CAS  Google Scholar 

  • Kuhara A and Mori I 2006 Molecular physiology of the neural circuit for calcineurin-dependent associative learning in Caenorhabditis elegans. J. Neurosci. 26 9355−9364

    PubMed  CAS  Google Scholar 

  • Kuhara A, Inada H, Katsura I and Mori I 2002 Negative regulation and gain control of sensory neurons by the C. elegans calcineurin TAX-6. Neuron 33 751–763

    PubMed  CAS  Google Scholar 

  • Kuno T, Mukai H, Ito A, Chang CD, Kishima K, Saito N and Tanaka C 1992 Distinct cellular expression of calcineurin A alpha and A beta in rat brain. J. Neurochem. 58 1643−1651

    PubMed  CAS  Google Scholar 

  • Kusch M and Edgar RS 1986 Genetic studies of unusual loci that affect body shape of the nematode Caenorhabditis elegans and may code for cuticle structural proteins. Genetics 113 621–639

    PubMed  CAS  Google Scholar 

  • Ladner CJ, Czech J, Maurice J, Lorens SA and Lee JM 1996 Reduction of calcineurin enzymatic activity in Alzheimer's disease: correlation with neuropathologic changes. J. Neuropathol. Exp. Neurol. 55 924−931

    PubMed  CAS  Google Scholar 

  • Lai MM, Burnett PE, Wolosker H, Blackshaw S and Snyder SH 1998 Cain, a novel physiologic protein inhibitor of calcineurin. J. Biol. Chem. 273 18325−18331

    PubMed  CAS  Google Scholar 

  • Lapierre LR, Melendez A and Hansen M 2012 Autophagy links lipid metabolism to longevity in C. elegans. Autophagy 8 144−146

    PubMed  CAS  Google Scholar 

  • Larsen PL, Albert PS and Riddle DL 1995 Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 139 1567–1583

    PubMed  CAS  Google Scholar 

  • Lee J, Jee C, Song HO, Bandyopadhyay J, Lee JI, Yu JR, Lee J, Park BJ and Ahnn J 2004 Opposing functions of calcineurin and CaMKII regulate G-protein signaling in egg-laying behavior of C. elegans. J. Mol. Biol. 344 585–595

    PubMed  CAS  Google Scholar 

  • Lee J, Song HO, Jee C, Vanoaica L and Ahnn J 2005 Calcineurin regulates enteric muscle contraction through EXP-1, excitatory GABA-gated channel, in C. elegans. J. Mol. Biol. 352 313−318

    PubMed  CAS  Google Scholar 

  • Lee JI, Dhakal BK, Lee J, Bandyopadhyay J, Jeong SY, Eom SH, Kim DH and Ahnn J 2003 The Caenorhabditis elegans homologue of Down syndrome critical region 1, RCN-1, inhibits multiple functions of the phosphatase calcineurin. J. Mol. Biol. 328 147–156

    PubMed  CAS  Google Scholar 

  • Lee SU, Song HO, Lee W, Singaravelu G, Yu JR and Park WY 2009 Identification and characterization of a putative basic helix-loop-helix (bHLH) transcription factor interacting with calcineurin in C. elegans. Mol. Cells 28 455−461

    PubMed  CAS  Google Scholar 

  • Leevers SJ and McNeill H 2005 Controlling the size of organs and organisms. Curr. Opin. Cell Biol. 17 604–609

    PubMed  CAS  Google Scholar 

  • Lian Q, Ladner CJ, Magnuson D and Lee JM 2001 Selective changes of calcineurin (protein phosphatase 2B) activity in Alzheimer's disease cerebral cortex. Exp. Neurol. 167 158−165

    PubMed  CAS  Google Scholar 

  • Lin X, Sikkink RA, Rusnak F and Barber DL 1999 Inhibition of calcineurin phosphatase activity by a calcineurin B homologous protein. J. Biol. Chem. 274 36125−36131

    PubMed  CAS  Google Scholar 

  • Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I and Schreiber SL 1991 Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66 807−815

    PubMed  CAS  Google Scholar 

  • Mair W, Morantte I, Rodrigues AP, Manning G, Montminy M, Shaw RJ and Dillin A 2011 Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470 404–408

    PubMed  CAS  Google Scholar 

  • Mansuy IM, Mayford M, Jacob B, Kandel ER and Bach ME 1998 Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell 92 39-49

    PubMed  CAS  Google Scholar 

  • Martinez-Finley EJ, Avil DS, Chakraborty S and Aschnera M 2011 Insights from Caenorhabditis elegans on the role of metals in neurodegenerative diseases. Metallomics 3 271–279

    PubMed  CAS  Google Scholar 

  • Massari ME and Murre C 2000 Helix-loop-helix proteins: regulators of transcription in eukaryotic organisms. Mol. Cell. Biol. 20 429−440

    PubMed  CAS  Google Scholar 

  • Matheu A, Maraver A, Klatt P, Flores I, Garcia-Cao I, Borras C, Flores JM, Vina J, Blasco MA and Serrano M 2007 Delayed ageing through damage protection by the Arf/p53 pathway. Nature 448 375–379

    PubMed  CAS  Google Scholar 

  • Mattila PS, Ullman KS, Fiering S, Emmel EA, McCutcheon M, Crabtree GR and Herzenberg LA 1990 The actions of cyclosporin A and FK506 suggest a novel step in the activation of T lymphocytes. EMBO J. 9 4425–4433

    PubMed  CAS  Google Scholar 

  • Mayr B and Montminy M 2001 Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2 599−609

    PubMed  CAS  Google Scholar 

  • Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, and Levine B 2003 Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301 1387–1391

    PubMed  CAS  Google Scholar 

  • Mendel JE, Korswagen HC, Liu KS, Hajdu-Cronin YM, Simon MI, Plasterk RH and Sternberg PW 1995 Participation of the protein Go in multiple aspects of behavior in C. elegans. Science 267 1652–1655

    PubMed  CAS  Google Scholar 

  • Milner B, Squire LR and Kandel ER 1998 Cognitive neuroscience and the study of memory. Neuron 20 445−468.

    PubMed  CAS  Google Scholar 

  • Miyakawa T, Leiter LM, Gerber DJ, Gainetdinov RR, Sotnikova TD, Zeng H, Caron MG and Tonegawa S 2003 Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophreni. Proc. Natl. Acad. Sci. USA 100 8987−8992

    PubMed  CAS  Google Scholar 

  • Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR and Olson EN 1998 A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93 215−228

    PubMed  CAS  Google Scholar 

  • Morck C and Pilon M 2006 C. elegans feeding defective mutants have shorter body lengths and increased autophagy. BMC Dev. Biol. 6 39−50

    Google Scholar 

  • Oh SW, Mukhopadhyay A, Svrzikapa N, Jiang F, Davis RJ and Tissenbaum HA 2005 JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc. Natl. Acad. Sci. USA 102 4494–4499

    PubMed  CAS  Google Scholar 

  • Panowski SH, Wolff S, Aguilaniu H, Durieux J and Dillin A 2007 PHA-4/Foxa mediates dietrestriction induced longevity of C. elegans. Nature 447 550–555

    PubMed  CAS  Google Scholar 

  • Pinkston JM, Garigan D, Hansen M and Kenyon C 2006 Mutations that increase the life span of C. elegans inhibit tumor growth. Science 313 971–975

    PubMed  CAS  Google Scholar 

  • Raizen DM, Zimmerman JE, Maycock MH, Ta UD, You YJ, Sundaram MV and Pack AI 2008 Lethargus is a Caenorhabditis elegans sleep-like state. Nature 451 569−572

    PubMed  CAS  Google Scholar 

  • Rao A, Luo C and Hogan PG 1997 Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15 707–747

    PubMed  CAS  Google Scholar 

  • Robatzek M and Thomas JH 2000 Calcium/calmodulin-dependent protein kinase II regulates Caenorhabditis elegans locomotion in concert with a G(o)/G(q) signaling network. Genetics 156 1069–1082

    PubMed  CAS  Google Scholar 

  • Rusnak F and Mertz P 2000 Calcineurin: form and function. Physiol. Rev. 80 1483−1521

    PubMed  CAS  Google Scholar 

  • Samara C and Tavernarakis N 2003 Calcium-dependent and aspartyl proteases in neurodegeneration and ageing in C. elegans. Ageing Res. Rev. 2 451–471

    CAS  Google Scholar 

  • Schafer WR 2006 Genetics of egg-laying in worms. Annu. Rev. Genet. 40 487–509

    PubMed  CAS  Google Scholar 

  • Scherz-Shouval R and Elazar Z 2007 ROS, mitochondria and the regulation of autophagy. Trends Cell Biol. 17 422–427

    PubMed  CAS  Google Scholar 

  • Schulz RA and Yutzey KE 2004 Calcineurin signaling and NFAT activation in cardiovascular and skeletal muscle development. Dev. Biol. 266 1–16

    PubMed  CAS  Google Scholar 

  • Screaton RA, Conkright MD, Katoh Y, Best JL, Canettieri G, Jeffries S, Guzman E, Niessen S, Yates JR 3rd, Takemori H, Okamoto M and Montminy M 2004 The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119 61−74

    PubMed  CAS  Google Scholar 

  • Shaw WM, Luo S, Landis J, Ashraf J and Murphy CT 2007 The C. elegans TGF-β Dauer pathway regulates longevity via insulin signaling. Curr. Biol. 17 1635–1645

    PubMed  CAS  Google Scholar 

  • Shobe J 2002 The role of PKA, CaMKII, and PKC in avoidance conditioning: permissive or instructive?. Neurobiol. Learn. Mem. 77 291−312

    PubMed  CAS  Google Scholar 

  • Shyn SI, Kerr R and Schafer WR 2003 Serotonin and Go modulate functional states of neurons and muscles controlling C. elegans egg-laying behaviour. Curr. Biol. 13 1910–1915

    PubMed  CAS  Google Scholar 

  • Singaravelu G, Song HO, Ji YJ, Jee C, Park BJ and Ahnn J 2007 Calcineurin interacts with KIN-29, a Ser/Thr kinase, in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 352 29−35

    PubMed  CAS  Google Scholar 

  • Someren JS, Faber LE, Klein JD and Tumlin JA 1999 Heat shock proteins 70 and 90 increase calcineurin activity in vitro through calmodulin-dependent and independent mechanisms. Biochem. Biophys. Res. Commun. 260 619−625

    PubMed  CAS  Google Scholar 

  • Stewart AA, Ingebritsen TS, Manalan A, Klee CB and Cohen P 1982 Discovery of a Ca2+- and calmodulin-dependent protein phosphatase: probable identity with calcineurin (CaM-BP80). FEBS Lett. 137 80−84

    PubMed  CAS  Google Scholar 

  • Sulston JE and Horvitz HR 1977 Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56 110–156

    PubMed  CAS  Google Scholar 

  • Sulston JE, Schierenberg E, White JG and Thomson JN 1983 The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100 64–119

    PubMed  CAS  Google Scholar 

  • Sun L, Youn HD, Loh C, Stolow M, He W and Liu JO 1998 Cabin 1, a negative regulator for calcineurin signaling in T lymphocytes. Immunity 8 703−711

    PubMed  CAS  Google Scholar 

  • Sundaram JS, Rao VM, Meena AK and Anandaraj MP 2007 Decreased calcineurin activity in circulation of Duchenne muscular dystrophy. Clin. Biochem. 40 443−446

    PubMed  CAS  Google Scholar 

  • Tavernarakis N, Pasparaki A, Tasdemir E, Maiuri MC and Kroemer G 2008 The effects of p53 on whole organism longevity are mediated by autophagy. Autophagy 4 870–873

    PubMed  CAS  Google Scholar 

  • Toth ML, Sigmond T, Borsos E, Barna J, Erdelyi P, Takacs-Vellai K, Orosz L, Kovacs AL, Csikos G, Sass M and Vellai T 2008 Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 4 330–338

    PubMed  CAS  Google Scholar 

  • Trailovic SM, Clark CL, Robertson AP and Martin RJ 2005 Brief application of AF2 produced long lasting potentiation of nAChR responses in Ascaris suum. Mol. Biochem. Parasitol. 139 51−64

    PubMed  CAS  Google Scholar 

  • Trent C, Tsuing N and Horvitz HR 1983 Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 104 619–647

    PubMed  CAS  Google Scholar 

  • Vellai T, Takacs-Vellai K, Sass M and Klionsky DJ 2009 The regulation of aging: does autophagy underlie longevity? Trends Cell Biol. 19 487–494

    PubMed  CAS  Google Scholar 

  • Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L and Muller F 2003 Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426 620

    PubMed  CAS  Google Scholar 

  • Wang J, Liu S, Haditsch U, Tu W, Cochrane K, Ahmadian G, Tran L, Paw J, Wang Y, Mansuy I, Salter MM and Lu YM 2003 Interaction of calcineurin and type-A GABA receptor gamma 2 subunits produces long-term depression at CA1 inhibitory synapses. J. Neurosci. 23 826−836

    PubMed  CAS  Google Scholar 

  • Wang JH and Desai R 1976 A brain protein and its effect on the Ca2+- and protein modulatoractivated cyclic nucleotide phosphodiesterase. Biochem. Biophys. Res. Commun. 72 926−932

    PubMed  CAS  Google Scholar 

  • Wang Y, Vera L, Fischer WH and Montminy M 2009 The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis. Nature 460 534−537

    PubMed  CAS  Google Scholar 

  • Winder DG, Mansuy IM, Osman M, Moallern TM and Kandel ER 1998 Genetic and pharmacological evidence for a novel, intermediate phase of long-term potentiation suppressed by calcineurin. Cell 92 25−37

    PubMed  CAS  Google Scholar 

  • Wu H-Y, Tomizawa K and Matsui H 2007 Calpain-calcineurin signaling in the pathogenesis of calcium-dependent disorder. Acta Med. Yokayama 61 123−137

    CAS  Google Scholar 

  • Xianglan C, Ko KM, Singaravelu G and Ahnn J 2008 Novel calcineurin-interacting protein-2: the functional characterization of CNP-2 in Caenorhabditis elegans. BMB Rep. 41 455−460

    PubMed  Google Scholar 

Download references

Acknowledgements

JIL is grateful to the National Institute of Drug Abuse for the Post-doctoral NRSA Fellowship. SM duly acknowledges the Indian Council of Medical Research for Research Associateship. KY is thankful to the National Institute of Deafness and Communication Disorders for the Post-doctoral NRSA fellowship. MD is supported by the Scientist Pool Grant from the Council of Scientific and Industrial Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaya Bandyopadhyay.

Additional information

MS received 20 December 2012; accepted 21 February 2013

Corresponding editor: Robert M Greenberg

[Lee JI, Mukherjee S, Yoon K-H, Dwivedi M and Bandyopadhyay J 2013 The multiple faces of calcineurin signaling in Caenorhabditis elegans: Development, behaviour and aging. J. Biosci. 38 1–15] DOI 10.1007/s12038-013-9319-6

Jin Il Lee and Sutapa Mukherjee contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.I., Mukherjee, S., Yoon, K. et al. The multiple faces of calcineurin signaling in Caenorhabditis elegans: Development, behaviour and aging. J Biosci 38, 417–431 (2013). https://doi.org/10.1007/s12038-013-9319-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-013-9319-6

Keywords

Navigation