Skip to main content

Advertisement

Log in

Diversity in global maize germplasm: Characterization and utilization

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Maize (Zea mays L.) is not only of worldwide importance as a food, feed and as a source of diverse industrially important products, but is also a model genetic organism with immense genetic diversity. Although it was first domesticated in Mexico, maize landraces are widely found across the continents. Several studies in Mexico and other countries highlighted the genetic variability in the maize germplasm. Applications of molecular markers, particularly in the last two decades, have led to new insights into the patterns of genetic diversity in maize globally, including landraces as well as wild relatives (especially teosintes) in Latin America, helping in tracking the migration routes of maize from the centers of origin, and understanding the fate of genetic diversity during maize domestication. The genome sequencing of B73 (a highly popular US Corn Belt inbred) and Palomero (a popcorn landrace in Mexico) in the recent years are important landmarks in maize research, with significant implications to our understanding of the maize genome organization and evolution. Next-generation sequencing and high-throughput genotyping platforms promise to further revolutionize our understanding of genetic diversity and for designing strategies to utilize the genomic information for maize improvement. However, the major limiting factor to exploit the genetic diversity in crops like maize is no longer genotyping, but high-throughput and precision phenotyping. There is an urgent need to establish a global phenotyping network for comprehensive and efficient characterization of maize germplasm for an array of target traits, particularly for biotic and abiotic stress tolerance and nutritional quality. ‘Seeds of Discovery’ (SeeD), a novel initiative by CIMMYT with financial support from the Mexican Government for generating international public goods, has initiated intensive exploration of phenotypic and molecular diversity of maize germplasm conserved in the CIMMYT Gene Bank; this is expected to aid in effective identification and use of novel alleles and haplotypes for maize improvement. Multi-institutional efforts are required at the global level to systematically explore the maize germplasm to diversify the genetic base of elite breeding materials, create novel varieties and counter the effects of global climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Almekinders CJM, Louwaars NP and de Bruijn GH 1994 Local seed systems and their importance for an improved seed supply in developing countries. Euphytica 78 207–216

    Article  Google Scholar 

  • Amusan IO, Richi PJ, Menkir A, Housley T and Ejeta G 2008 Resistance to Striga hermonthica in a maize inbred line derived from Zea diploperennis. New Phytol. 178 157–166

    Article  PubMed  Google Scholar 

  • Arnason JT, Baum B, Gale J, Lambert JDH, Bergvinson D, Philogene BJR, Serratos JA, Mihm J and Jewell DC 1994 Variation in resistance of Mexican landraces of maize to maize weevil Sitophilus zeamais, in relation to taxonomic and biochemical parameters. Euphytica 74 227–236

    Article  Google Scholar 

  • Balint-Kurti P, Blanco M, Milard M, Duvick S, Holland J, Clements M, Holley R, Carson ML and Goodman M 2006 Registration of 20 GEM maize breeding germplasm lines adapted to the southern U.S. Crop Sci. 46 996–998

    Article  Google Scholar 

  • Baltazar BM, Sanchez Gonzalez JJ, de la Cruz-Larios L and Schoper JB 2005 Pollination between maize and teosinte: an important determinant of gene flow in Mexico. Theor. Appl. Genet. 110 519–526

    Article  PubMed  Google Scholar 

  • Bellon M and Berthaud J 2004 Transgenic maize and the evolution of landrace diversity in Mexico: The importance of farmers’ behavior. Plant Physiol. 134 883–888

    Article  PubMed  CAS  Google Scholar 

  • Bellon M and Risopoulos J 2001. Small-scale farmers expand the benefits of improved maize germplasm: A case study from Chiapas, Mexico. World Develop. 29 799–811

  • Benz BF 1987 Racial systematics and the evolution of Mexican maize; in Studies in the neolithic and urban revolution: V Gordon Childe colloquium (ed) L Manzanilla, BAR International Series 349 (Oxford: BAR) pp 121–136

  • Beyene Y, Botha A and Alexander AM 2006 Genetic diversity among traditional Ethiopian highland maize accessions assessed by simple sequence repeat (SSR) markers. Genet. Res. Crop Evol. 53 1579–1588

    Article  CAS  Google Scholar 

  • Bracco M, Lia VV, Gottlieb AM, Camara Hernandez J and Poggio L 2009. Genetic diversity in maize landraces from indigenous settlements of Northeastern Argentina. Genetica 135 39–49

    Article  PubMed  Google Scholar 

  • Cairns JE, Sonder K, Zaidi PH, Verhulst N, Mahuku G, Babu R, Nair SK, Das B, et al. 2012 Maize production in a changing climate: impacts, adaptation and mitigation strategies. Adv. Agron. 114 1–58

    Article  Google Scholar 

  • Camacho-Villa TC, Maxted N, Scholten M and Ford-Lloyd B 2005 Defining and identifying crop landraces. Plant Genet. Res. 3 373–384

    Article  Google Scholar 

  • Crossa J, Taba S, Eberhart SA, Bretting P and Vencovsky R 1994 Practical considerations for maintaining germplasm in maize. Theor. Appl. Genet. 89: 89–95

    Google Scholar 

  • Dhawan NL 1964 Primitive maize in Sikkim. Maize Genet. Coop. Newsletter 38 69–70

    Google Scholar 

  • Dhillon BS, Vasal SK and Prasanna BM 2002 Maize; in Evolution and adaptation of cereal crops (eds) VL Chopra and Shyam Prakash (New Delhi: Oxford & IBH) pp 99–133

    Google Scholar 

  • Dubreuil P, Warburton ML, Chastanet M, Hoisington D and Charcosset A 2006 More on the introduction of temperate maize into Europe: large-scale bulk SSR genotyping and new historical elements. Maydica 51 281–291

    Google Scholar 

  • Ellstrand NC, Garner LC, Hegde S, Guadagnuolo R and Blancas L 2007 Spontaneous hybridization between maize and teosinte. J. Heredity 98 183–187

    Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES and Mitchell SE 2011 A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6 e19379.

    Article  PubMed  CAS  Google Scholar 

  • Eschholz TW, Peter R, Stamp P and Hund A 2006 Swiss maize landraces – their diversity and genetic relationships. Acta Agronomica Hungarica 54 321–328

    Article  CAS  Google Scholar 

  • Evans MMS and Kermicle JL 2001 Teosinte crossing barrier1, a locus governing hybridization of teosinte with maize. Theor. Appl. Genet. 103 259–265

    Article  CAS  Google Scholar 

  • FAOSTAT 2010 Statistical databases and data-sets of the Food and Agriculture Organization of the United Nations ( http://faostat.fao.org/default.aspx )

  • Franco J, Crossa J, Taba S and Shands HA 2005 A sampling strategy for conserving genetic diversity when forming core subsets. Crop Sci. 45 1035–1044

    Article  Google Scholar 

  • Goodman MM 1988 The history and evolution of maize. CRC Critic. Rev. Plant Sci. 7 197–220

    Article  Google Scholar 

  • Goodman MM 2005 Broadening the U.S. maize germplasm base. Maydica 50 203–214

    Google Scholar 

  • Goodman MM and Brown WL 1988 Races of corn; in Corn and Corn Improvement (eds) GF Sprague and JW Dudley (Madison, Wisconsin: American Society of Agronomy) pp 33–79

    Google Scholar 

  • Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH and Buckler ES 2009 A first-generation haplotype map of maize. Science 326 1115–1117

    Article  PubMed  CAS  Google Scholar 

  • Gurney AL, Grimanelli D, Kanampiu F, Hoisington D, Scholes JD and Press MC 2003 Novel sources of resistance to Striga hermonthica in Tripsacum dactyloides, a wild relative of maize. New Phytol. 160 557–568

    Article  Google Scholar 

  • Hamblin MT, Warburton ML and Buckler ES 2007 Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS ONE 2 e1367

    Article  PubMed  Google Scholar 

  • Inghelandt DV, Melchinger AE, Lebreton C and Stich B 2010 Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor. Appl. Genet. 120 1289–1299

    Article  PubMed  Google Scholar 

  • Jones ES, Sullivan H, Bhattramakki D and Smith JSC 2007 A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zea mays L.). Theor. Appl. Genet. 115 361–371

    Article  PubMed  CAS  Google Scholar 

  • Kannenberg LW and Falk DE 1995 Models for activation of plant genetic resources for crop breeding programs. Can. J. Plant Sci. 75 45–53

    Article  Google Scholar 

  • Kato YTA 1988 Cytological classification of maize race populations and its potential use; in Recent advances in the conservation and utilization of genetic resources: Proceedings of the Global Maize Germplasm Workshop (Mexico D.F.: CIMMYT) pp 106–117

  • Kempton JH 1924 Jala maize: a giant variety from Mexico. J. Heredity 15 337–344

    Google Scholar 

  • Kim SK, Akintunde AY and Walker P 1999 Responses of maize inbreds during development of Striga hermonthica infestation. Maydica 44 333–339

    Google Scholar 

  • Lane JA, Child DV, Moore THM, Arnold GM and Bailey JA 1997 Phenotypic characterisation of resistance in Zea diploperennis to Striga hermonthica. Maydica 42 45–51

    Google Scholar 

  • Legesse BW, Myburd AA, Pixley KV and Botha AM 2007 Genetic diversity of African maize inbred lines revealed by SSR markers. Hereditas 144 10–17

    Article  PubMed  CAS  Google Scholar 

  • Li Y 1998 Development and germplasm base of maize hybrids in China. Maydica 43 259–269

    Google Scholar 

  • Listman GM and Estrada FP 1992 Mexican prize for the giant maize of Jala: source of community pride and genetic resources conservation. Diversity 8 14–15

    Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP and Naylor RL 2008 Prioritizing climate change adaptation needs for food security in 2030. Science 319 607–610

    Article  PubMed  CAS  Google Scholar 

  • Louette D and Smale M 2000 Farmers' seed selection practices and traditional maize varieties in Cuzalapa, Mexico. Euphytica 113 25–41

    Article  Google Scholar 

  • Louette D, Charrier A and Berthaud J 1997 In situ conservation of maize in Mexico: genetic diversity and maize seed management in a traditional community. Econ. Bot. 51 20–38

    Article  Google Scholar 

  • Lu Y, Yan J, Guimares CT et al. 2009 Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor. Appl. Genet. 120 93–115

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez Garcia J, Buckler E and Doebley J 2002 A single domestication for maize shown by multilocus microsatellite genotyping. Proc. Natl. Acad. Sci. USA 99 6080–6084

    Article  PubMed  CAS  Google Scholar 

  • Maxted N, Ford-Lloyd BV and Hawkes JG 1997 Plant genetic conservation: The in-situ approach (London: Chapman and Hall)

    Book  Google Scholar 

  • McCann JC 2005 Maize and grace: Africa’s encounter with a New World crop, 1500–2000 (Cambridge: Harvard University Press)

    Google Scholar 

  • Menkir A, Kling JG, Badu-Apraku B and Ibikunle O 2006 Registration of 26 tropical maize germplasm lines with resistance to Striga hermonthica. Crop Sci. 46 1007–1009

    Article  Google Scholar 

  • Metzker ML 2010 Sequencing technologies — the next generation. Nature Rev. Genet. 11 31–46

    Article  PubMed  CAS  Google Scholar 

  • Morris ML, Risopoulos J and Beck D 1999 Genetic change in farmer recycled maize seed: a review of the evidence. CIMMYT Economics Working Paper 99-07

  • Ortega-Paczka R 1973 Variacion en maiz y cambios socioeconomicos en Chiapas, Mexico 1946-1971. PhD thesis (Chapingo, Mexico: Colegio de Postgraduado)

  • Ortiz R, Taba S et al. 2010 Conserving and enhancing maize genetic resources as global public goods – a perspective from CIMMYT. Crop Sci. 50 13–28

    Article  Google Scholar 

  • Patto MC, Satovic Z, Pego S and Fevereiro P 2004 Assessing the genetic diversity of Portugese maize germplasm using microsatellite markers. Euphytica 137 63–72

    Article  CAS  Google Scholar 

  • Prasanna BM 2010 Phenotypic and molecular diversity of maize landraces: characterization and utilization. Indian J. Genet. 70: 315–327

    Google Scholar 

  • Prasanna BM and Lata Sharma 2005 The landraces of maize (Zea mays L.): diversity and utility. Indian J. Plant Genet. Res. 18 155–168

    Google Scholar 

  • Prasanna BM, Pixley K, Warburton ML and Xie CX 2010 Molecular marker-assisted breeding options for maize improvement in Asia. Mol. Breeding 26 339–356

    Article  CAS  Google Scholar 

  • Pressoir G and Berthaud J 2004 Patterns of population structure in maize landraces from the Central Valleys of Oaxaca in Mexico. Heredity 92 88–94

    Article  PubMed  CAS  Google Scholar 

  • Qi-Lun Y, Ping F, Ke-Cheng K and Guang-Tang P 2008 Genetic diversity based on SSR markers in maize (Zea mays L.) landraces from Wuling mountain region in China. J. Genet. 87 287–291

    Article  PubMed  Google Scholar 

  • Rebourg C, Chastanet M, Gouesnard B, Welcker C, Dubreuil P and Charcosset A 2003 Maize introduction into Europe: the history reviewed in the light of molecular data. Theor. Appl. Genet. 106 895–903

    PubMed  CAS  Google Scholar 

  • Reif JC, Xia XC, Melchinger AE, Warburton ML, Hoisington DA, Beck D, Bohn M and Frisch M 2004 Genetic diversity determined within and among CIMMYT maize populations of tropical, subtropical, and temperate germplasm by SSR markers. Crop Sci. 44 326–334

    Article  CAS  Google Scholar 

  • Rice EB 2004 Conservation and change: a comparison of in-situ and ex-situ conservation of Jala maize germplasm in Mexico. PhD thesis (USA: Cornell University)

  • Rich PJ and Ejeta G 2008 Towards effective resistance to Striga in African maize. Plant Signal. Behav. 3 618–621

    Article  PubMed  Google Scholar 

  • Rodriguez MG, Miguel-Chavez RS and Larque-Saavedra A 1998 Physiological aspects in Tuxpeno maize with improved drought tolerance. Maydica 43 137–141

    Google Scholar 

  • Rosegrant MR, Ringler C, Sulser TB, Ewing M, Palazzo A, Zhu T, et al. 2009 Agriculture and food security under global change: Prospects for 2025/2050 (Washington, D.C.: International Food Policy Research Institute)

    Google Scholar 

  • Salhuana W and Pollak L 2006 Latin American maize project (LAMP) and germplasm enhancement of maize (GEM) project: Generating useful breeding germplasm. Maydica 51 339–355

    Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA et al. 2009 The B73 maize genome: complexity, diversity, and dynamics. Science 326 1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Sharma L, Prasanna BM and Ramesh B 2010 Phenotypic and microsatellite-based diversity and population genetic structure of maize landraces in India, especially from the North East Himalayan region. Genetica 138 619–631

    Article  PubMed  CAS  Google Scholar 

  • Shendure J and Ji H 2008 Next-generation DNA sequencing. Nature Biotechnol. 26 1135–1145

    Article  CAS  Google Scholar 

  • Shiferaw B, Prasanna B, Hellin J and Banziger M 2011 Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security 3 307–327

    Article  Google Scholar 

  • Singh B 1977 Races of maize in India (New Delhi: Indian Council of Agricultural Research)

    Google Scholar 

  • Singode A and Prasanna BM 2010 Analysis of genetic diversity in the North Eastern Himalayan (NEH) maize landraces of India using microsatellite markers. J. Plant Biochem. Biotech. 19 33–41

    Google Scholar 

  • Smale M and Bellon M 1999 A conceptual framework for valuing on-farm genetic resources; in Agrobiodiversity: Characterization, utilization and management (eds) D Wood and J Lenne (Wallingford: CABI Publishing) pp 387–408

    Google Scholar 

  • Smale M, Bellon M, Jarvis D and Sthapit B 2004 Economic concepts for designing policies to conserve crop genetic resources on farms. Genet. Res. Crop Evol. 51 121–135

    Article  Google Scholar 

  • Studer A, Zhao Q, Ross-Ibarra J and Doebley J 2011 Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 43 1160–1165

    Article  PubMed  CAS  Google Scholar 

  • Taba S and Twumasi-Afriyie S 2008 Regeneration guidelines: maize; in Crop-specific regeneration guidelines (eds) ME Dullo, I Thormann, MA Jorge and J Hanson (Rome: CGIAR System-wide Genetic Resource Programme) [CD-ROM]

    Google Scholar 

  • Taba S, Díaz J, Franco J, Crossa J and Eberhart SA 1999 A core subset of LAMP from the Latin American Maize Project (México, D.F., México: CIMMYT) [CD-ROM]

    Google Scholar 

  • Taba S, van Ginkel M, Hoisington D and Poland D 2004 Wellhausen-Anderson Plant Genetic Resources Center: Operations manual (Mexico: CIMMYT)

    Google Scholar 

  • van Heerwaarden J, Doebley J, Briggs WH, Glaubitz JC, Goodman MM, Jesus JD, Gonzalez S and Ross-Ibarra J 2011 Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc. Natl. Acad. Sci. USA 108 1088–1092

    Article  PubMed  Google Scholar 

  • Vielle-Calzada J-P, de la Vega OM, Hernández-Guzmán G, et al. 2010 The Palomero genome suggests metal effects on maize domestication. Science 326 1078

    Article  Google Scholar 

  • Vigouroux Y, McMullen M, Hittinger CT, Houchins K, Schulz L, Kresovich S, Matsuoka Y and Doebley J 2002 Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc. Natl. Acad. Sci. USA 99 9650–9655

    Article  PubMed  CAS  Google Scholar 

  • Vigouroux Y, Glaubitz JC, Matsuoka Y, Goodman MM, Jesus SG and Doebley J 2008 Population structure and genetic diversity of new world maize races assessed by DNA microsatellites. Am. J. Bot. 95 1240–1253

    Google Scholar 

  • Walbot V 2009 10 reasons to be tantalized by the B73 maize genome. PLoS Genetics 5(11) e1000723

    Article  PubMed  Google Scholar 

  • Warburton ML, Xia X, Crossa J, Franco J, Melchinger AE, Frisch M, Bohn M and Hoisington D 2002 Genetic characterization of CIMMYT inbred maize lines and open pollinated populations using large scale fingerprinting methods. Crop Sci. 42 1832–1840

    Article  Google Scholar 

  • Warburton ML, Reif JC, Frisch M, Bohn M, Bedoya C, Xia XC, Crossa J, Franco J, Hoisington D, Pixley K, Taba S and Melchinger AE 2008 Genetic diversity in CIMMYT non-temperate maize germplasm: Landraces, open pollinated varieties, and inbred lines. Crop Sci. 48 617–624

    Article  Google Scholar 

  • Warburton M, Setimela P, Franco J, Cordova H, Pixley K, Banziger M, Dreisigacker S, Bedoya C and MacRobert J 2010 Toward a cost-effective fingerprinting methodology to distinguish maize open-pollinated varieties. Crop Sci. 50 467–477

    Article  Google Scholar 

  • Warburton ML, Wilkes G, Taba S, Charcosset A, Mir C, Bedoya C, Prasanna BM, Xie CX, Hearne SH and Franco J 2011 Gene flow between different teosinte species and into the domesticated maize gene pool. Genet. Res. Crop Evol. 58 1243–1261.

    Article  Google Scholar 

  • Weber AL, Briggs WH, Rucker J, Baltazar BM, Sanchez-Gonzalez JDJ, Feng P, Buckler ES and Doebley J 2008 The genetic architecture of complex traits in teosinte (Zea mays ssp. parviglumis): New evidence from association mapping. Genetics 180 1221–1232

    Article  PubMed  CAS  Google Scholar 

  • Wellhausen E, Roberts L, Hernandez E, and Mangelsdorf P 1952. Races of maize in Mexico: Their origin, characteristics and distribution (Cambridge: The Bussey Institute of Harvard University)

    Google Scholar 

  • Wen W, Taba S, Shah T, Tovar VHC and Yan J 2011 Detection of genetic integrity of conserved maize (Zea mays L.) germplasm in genebanks using SNP markers. Genet. Res. Crop Evol. 58 189–207

    Google Scholar 

  • Wilkes HJ 1977 Hybridization of maize and teosinte in Mexico and Guatemala and the improvement of maize. Econ. Bot. 31 254–293

    Article  Google Scholar 

  • Xu Y, Lu Y, Gao S, Wan J and Prasanna BM 2012 Whole genome strategies for molecular marker-assisted plant breeding. Mol. Breeding DOI 10.1007/s11032-012-9699-6.

  • Yan J, Yang X, Shah T, Héctor Sánchez H, Li J, Warburton M, Zhou Y, Crouch JH and Xu Y 2010 High-throughput SNP genotyping with the GoldenGate assay in maize. Mol. Breeding 25 441–451

    Article  CAS  Google Scholar 

  • Yu Y, Wang R, Shi Y, Song Y, Wang T and Li Y 2007 Genetic diversity and structure of the core collection for maize inbred lines in China. Maydica 52 81–194

    Google Scholar 

  • Yu J, Hollan JB, McMullen MD and Buckler ES 2008 Genetic design and statistical power of nested association mapping in maize. Genetics 178 539–551.

    Article  PubMed  Google Scholar 

  • Yu JM, Zhang ZW, Zhu CS, Tabanao DA, Pressoir G, Tuinstra MR, Kresovich S, Todhunter RJ and Buckler ES 2009 Simulation appraisal of the adequacy of number of background markers for relationship estimation in association mapping. Plant Genome 2 63–77

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B M Prasanna.

Additional information

[Prasanna BM 2012 Diversity in global maize germplasm: Characterization and utilization. J. Biosci. 37 1–13] DOI 10.1007/s12038-012-9227-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasanna, B.M. Diversity in global maize germplasm: Characterization and utilization. J Biosci 37, 843–855 (2012). https://doi.org/10.1007/s12038-012-9227-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-012-9227-1

Keywords

Navigation