Skip to main content
Log in

Studies of base pair sequence effects on DNA solvation based on all-atom molecular dynamics simulations

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Detailed analyses of the sequence-dependent solvation and ion atmosphere of DNA are presented based on molecular dynamics (MD) simulations on all the 136 unique tetranucleotide steps obtained by the ABC consortium using the AMBER suite of programs. Significant sequence effects on solvation and ion localization were observed in these simulations. The results were compared to essentially all known experimental data on the subject. Proximity analysis was employed to highlight the sequence dependent differences in solvation and ion localization properties in the grooves of DNA. Comparison of the MD-calculated DNA structure with canonical A- and B-forms supports the idea that the G/C-rich sequences are closer to canonical A- than B-form structures, while the reverse is true for the poly A sequences, with the exception of the alternating ATAT sequence. Analysis of hydration density maps reveals that the flexibility of solute molecule has a significant effect on the nature of observed hydration. Energetic analysis of solute–solvent interactions based on proximity analysis of solvent reveals that the GC or CG base pairs interact more strongly with water molecules in the minor groove of DNA that the AT or TA base pairs, while the interactions of the AT or TA pairs in the major groove are stronger than those of the GC or CG pairs. Computation of solvent-accessible surface area of the nucleotide units in the simulated trajectories reveals that the similarity with results derived from analysis of a database of crystallographic structures is excellent. The MD trajectories tend to follow Manning’s counterion condensation theory, presenting a region of condensed counterions within a radius of about 17 Å from the DNA surface independent of sequence. The GC and CG pairs tend to associate with cations in the major groove of the DNA structure to a greater extent than the AT and TA pairs. Cation association is more frequent in the minor groove of AT than the GC pairs. In general, the observed water and ion atmosphere around the DNA sequences is the MD simulation is in good agreement with experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Albiser GA, Lamiri A and Premilat S 2001 The A--B transition: temperature and base composition effects on hydration of DNA. Int. J. Biol. Macromol. 28 199–203

    Article  PubMed  CAS  Google Scholar 

  • Anderson CF and Record Jr MT 1982 Polyelectrolyte theories and their application to DNA. Annu. Rev. Phys. Chem. 33 191–222

    Article  CAS  Google Scholar 

  • Aqvist J 1990 Ion-water interaction potentials derived from free energy perturbation simulations. J. Phys. Chem. 94 8021–8024

    Article  Google Scholar 

  • Arthanari H, McConnell KJ, Beger R, Young MA, Beveridge DL and Bolton PH 2003 Assessment of the molecular dynamics structure of DNA in solution based on calculated and observed NMRNOESY volumes and dihedral angles. Biopolymers 68 1097–0282

    Article  CAS  Google Scholar 

  • Auffinger P and Hashem Y 2007 SwS: a solvation web service for nucleic acids. Bioinformatics 23 1035–1037

    Article  PubMed  CAS  Google Scholar 

  • Basham B, Schroth GP and Ho PS 1995 An A-DNA triplet code: thermodynamic rules for predicting A- and B-DNA. Proc. Natl. Acad. Sci. USA 92 6464–6468

    Article  PubMed  CAS  Google Scholar 

  • Berendsen HJ, Postma JP, van Gusteren WF, DiNola A and Haak JR 1984 Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81 3684–3690

    Article  CAS  Google Scholar 

  • Berman HM and Schneider B 1999 Nucleic acid hydration; in Oxford handbook of nucleic acid structure (ed) S Neidle (Oxford: Oxford University Press) pp 295–312

    Google Scholar 

  • Beveridge DL, Barreiro G, Byun KS, Case DA, Cheatham TE III, Dixit SB, Giudice E, Lankas F, et al. 2004 Molecular dynamics simulations of the 136 unique tetranucleotide sequences of DNA oligonucleotides. I. Research design and results on d(CpG) steps. Biophys. J. 87 3799–3813

    Article  PubMed  CAS  Google Scholar 

  • Beveridge DL, Dixit SB, Barreiro G and Thayer KM 2004 Molecular dynamics simulations of DNA curvature and flexibility: helix phasing and premelting. Biopolymers 73 380–403

    Article  PubMed  CAS  Google Scholar 

  • Calladine CR 1982 Mechanics of Sequence-dependent Stacking of Bases in B-DNA. J. Mol. Biol. 161 343–352

    Article  PubMed  CAS  Google Scholar 

  • Case DA, Pearlman DA, Caldwell JW, Cheatham IIIT E, Ross WS, Simmerling CL, Darden TA, Merz KM, et al. 1999 AMBER 6 (San Francisco: University of California)

    Google Scholar 

  • Case DA, Darden TA, Cheatham IIIT E, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, et al. 2004 AMBER 8 (San Francisco: University of California)

    Google Scholar 

  • Chalikian TV and Breslauer KJ 1998 Volumetric properties of nucleic acids. Biopolymers 48 264–280

    Article  PubMed  CAS  Google Scholar 

  • Chalikian TV, Sarvazyan AP, Plum GE and Breslauer KJ 1994 Influence of base composition, base sequence, and duplex structure on DNA hydration: apparent molar volumes and apparent molar adiabatic compressibilities of synthetic and natural DNA duplexes at 25 degrees C. Biochemistry 33 2394–2401.

    Article  PubMed  CAS  Google Scholar 

  • Cheatham IIIT E and Kollman PA 1996 Observation of the A-DNA to B-DNA transition during unrestrained molecular dynamics in aqueous solution. J. Mol. Biol. 259 434–444

    Article  PubMed  CAS  Google Scholar 

  • Cheatham IIIT E and Kollman PA 1997 Molecular Dynamics Simulations Highlight the structural differences among DNA:DNA, RNA:RNA and DNA:RNA hybrid duplexes journal. J. Am. Chem. Soc. 119 4805–4825

    Article  CAS  Google Scholar 

  • Cheatham IIIT E and Young MA 2000 Molecular dynamics simulation of nucleic acids: successes, limitations, and promise. Biopolymers 56 232–256

    Article  PubMed  CAS  Google Scholar 

  • Cheatham TE III, Miller JL, Fox T, Darden TA and Kollman PA 1995 Molecular dynamics simulations on solvated biomolecular systems: The particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins. J. Am. Chem. Soc. 117 4193–4194

    Article  CAS  Google Scholar 

  • Chen YZ and Prohofsky EW 1993 Synergistic effects in the melting of DNA hydration shell: melting of the minor groove hydration spine in poly(dA)poly(dT) and its effect on base pair stability. Biophys. J. 64 1385–1393

    Article  PubMed  CAS  Google Scholar 

  • Chiu TK, Kaczor-Grzeskowiak M and Dickerson RE 1999 Absence of minor groove monovalent cations in the crosslinked dodecamer C-G-C-G-A-A-T-T-C-G-C-G. J. Mol. Biol. 292 589–608

    Article  PubMed  CAS  Google Scholar 

  • Chocholousova J and Feig M 2006 Implicit solvent simulations of DNA and DNA-protein complexes: agreement with explicit solvent vs experiment. J. Phys. Chem. B 110 17240–17251

    Article  PubMed  CAS  Google Scholar 

  • Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, et al. 1995 A second generation force field for the simulation of proteins, nucleid acids and organic molecules. J. Am. Chem. Soc. 117 5179–5197

    Article  CAS  Google Scholar 

  • DeLano WL 2002 The PyMOL molecular graphics system (San Carlos, CA: DeLano Scientific)

    Google Scholar 

  • Denisov VP and Halle B 2000 Sequence-specific binding of counterions to B-DNA. Proc. Natl. Acad. Sci. USA 97 629–633

    Article  PubMed  CAS  Google Scholar 

  • Dixit SB and Beveridge DL 2006 Structural bioinformatics of DNA: a web-based tool for the analysis of molecular dynamics results and structure prediction. Bioinformatics 22 1007–1009

    Article  PubMed  CAS  Google Scholar 

  • Dixit SB, Beveridge DL, Case DA, Cheatham TE III, Giudice E, Lankas F, Lavery R, Maddocks JH, et al. 2005 Molecular dynamics simulations of the 136 unique tetranucleotide sequences of DNA oligonucleotides II: Sequence context effects on the dynamical structures of the 10 unique dinucleotide steps. Biophys. J. 89 3721–3740

    Article  PubMed  CAS  Google Scholar 

  • Dixit SB, Ponomarev SY and Beveridge DL 2006 Root mean square deviation probability analysis of molecular dynamics trajectories on DNA. J. Chem. Inf. Model. 46 1084–1093

    Article  PubMed  CAS  Google Scholar 

  • Djuranovic D and Hartmann B 2003 Conformational characteristics and correlations in crystal structures of nucleic acid oligonucleotides: evidence for sub-states. J. Biomol. Struct. Dyn. 20 771–788

    Article  PubMed  CAS  Google Scholar 

  • Duan Y, Wilkosz P, Crowley M and Rosenberg JM 1997 Molecular dynamics simulation study of DNA dodecamer d(CGCGAATTCGCG) in solution: conformation and hydration. J. Mol. Biol. 272 553–572

    Article  PubMed  CAS  Google Scholar 

  • Egli M, Tereshko V, Teplova M, Minasov G, Joachimiak A, Sanishvili R, Weeks CM, Miller R, et al. 1998 X-ray crystallographic analysis of the hydration of A- and B-form DNA at atomic resolution. Biopolymers 48 234–252

    Article  PubMed  CAS  Google Scholar 

  • Eisenstein M and Shakked Z 1995 Hydration patterns and intermolecular interactions in A-DNA crystal structures. Implications for DNA recognition. J. Mol. Biol. 248 662–678

    Article  PubMed  CAS  Google Scholar 

  • Elcock AH and McCammon JA 1995 Sequence dependent hydration of DNA: Theoretical results. J. Am. Chem. Soc. 117 10161–10162

    Article  CAS  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H and Pedersen LG 1995 A smooth particle mesh Ewald method. J. Chem. Phys. 103 8577–8593

    Article  CAS  Google Scholar 

  • Feig M and Pettitt BM 1998 A molecular simulation picture of DNA hydration around A- and B-DNA. Biopolymers 48 199–209

    Article  PubMed  CAS  Google Scholar 

  • Feig M and Pettitt BM 1999 Modeling high-resolution hydration patterns in correlation with DNA sequence and conformation. J. Mol. Biol. 286 1075–1095

    Article  PubMed  CAS  Google Scholar 

  • Franklin RE and Gosling RG 1953 The structure of sodium thymonucleate fibers I. The influence of water content. Acta Cryst. 6 673–677

    Google Scholar 

  • Gao YG, Robinson H and Wang AH 1999 High-resolution A-DNA crystal structures of d(AGGGGCCCCT). An A-DNA model of poly(dG) x poly(dC). Eur. J. Biochem. 261 413–420

    Article  PubMed  CAS  Google Scholar 

  • Guarnieri F and Mezei M 1996 Simulated annealing of chemical potential: a general procedure for locating bound waters. Application to the study of the differential hydration propensities of the major and minor grooves of DNA. J. Am. Chem. Soc. 118 8493–8494

    Article  CAS  Google Scholar 

  • Guzikevich-Guerstein G and Shakked Z 1996 A novel form of the DNA double helix imposed on the TATA-box by the TATA-binding protein. Nat. Struct. Biol. 3 32–37

    Article  PubMed  CAS  Google Scholar 

  • Halle B and Denisov VP 1998 Water and monovalent ions in the minor groove of B-DNA oligonucleotides as seen by NMR. Biopolymers 48 210–233

    Article  PubMed  CAS  Google Scholar 

  • Harvey SC, Tan RK-Z and Cheatham TE III 1998 The flying ice cube: Velocity rescaling in molecular dynamics leads to violation of energy equipartition. J. Comput. Chem. 19 726–740

    Article  CAS  Google Scholar 

  • Howard JJ, Lynch GC and Pettitt BM 2011 Ion and solvent density distributions around canonical B-DNA from integral equations. J. Phys. Chem. B 115 547–556

    Article  PubMed  CAS  Google Scholar 

  • Hunter CA 1993 sequence-dependent DNA structure: The Role of base stacking interactions. J. Mol. Biol. 230 1025–1054

    Article  PubMed  CAS  Google Scholar 

  • Ivanov VI and Minchenkova LE 1994 The A-form of DNA: In search of the biological role. Mol. Biol. (Mosk) 28 1258–1271

    CAS  Google Scholar 

  • Jayaram B and Beveridge DL 1990 Free energy of an arbitrary charge distribution imbedded in coaxial cylindrical dielectric continua: application to conformational preferences of DNA in aqueous solutions. J. Phys. Chem. 94 4666–4671

    Article  CAS  Google Scholar 

  • Jayaram B and Beveridge DL 1991 Grand canonical Monte-Carlo simulations on aqueous solutions of NaCl and NaDNA: Excess chemical potentials and sources of nonideality in electrolyte and polyelectrolyte solutions. J. Phys. Chem. 95 2506–2516

    Article  CAS  Google Scholar 

  • Jayaram B and Beveridge DL 1996 Modeling DNA in aqueous solution: Theoretical And computer simulation studies on the ion atmosphere of DNA. Annu. Rev. Biophys. Biomol. Struct. 25 367–394

    Article  PubMed  CAS  Google Scholar 

  • Jayaram B, Sharp K and Honig B 1989 The electrostatic potential of B-DNA. Biopolymers 28 975–993

    Article  PubMed  CAS  Google Scholar 

  • Jayaram, B, DiCapua FM and Beveridge DL 1991 A theoretical study of polyelectrolyte effects in protein-DNA interactions: Monte Carlo free energy simulations on the ion atmosphere contribution to the thermodynamics of l repressor-operator complex formation. J. Am. Chem. Soc. 113 5211–5215

    Article  CAS  Google Scholar 

  • Jayaram B, Sprous D, Young MA and Beveridge DL 1998 Free energy analysis of the conformational preferences of A and B forms of DNA in solution. J. Am. Chem. Soc. 120 10629–10633

    Article  CAS  Google Scholar 

  • Jorgensen WL 1981 Transferable intermolecular potential functions for water, alcohols and ethers. Application to liquid water. J. Am. Chem. Soc. 103 335–340

    Article  CAS  Google Scholar 

  • Jovin TM, Soumpasis DM and McIntosh LP 1987 The transition between B-DNA and Z-DNA. Annu. Rev. Phys. Chem. 38 521–560

    Article  CAS  Google Scholar 

  • Khandelwal G and Jayaram B 2012 DNA-water interactions distinguish messenger RNA genes from transfer RNA genes. J. Am. Chem. Soc. DOI: 10.1021/ja3020956

  • Knee KM, Dixit SB, Aitken CE, Ponomarev S, Beveridge DL and Mukerji I 2008 Spectroscopic and molecular dynamics evidence for a sequential mechanism for the A-to-B transition in DNA. Biophys J 95 257–272

    Article  PubMed  CAS  Google Scholar 

  • Kopka ML, Fratini AV, Drew HR and Dickerson RE 1983 Ordered water structure around a B-DNA dodecamer. A quantitative study. J. Mol. Biol. 163 129–146

    Article  PubMed  CAS  Google Scholar 

  • Kuntz Jr. ID, Brassfield TS, Law GD and Purcell GV 1969 Hydration of macromolecules. Science 163 1329–1331

    Article  PubMed  CAS  Google Scholar 

  • Lavery R, Zakrzewska K, Beveridge DL , Bishop TC, Case DA, Cheatham TIII, Dixit SB , Jayaram B, et al. 2010 A systematic molecular dynamics study of nearest-neighbor effects on base pair and base pair step conformations and fluctuations in B-DNA. Nucleic Acids Res. 38 299–313

    Article  PubMed  CAS  Google Scholar 

  • Leikin S, Parsegian VA and Rau DC 1993 Hydration Forces. Annual Review of Physical Chemistry 44 369–395

    Article  PubMed  CAS  Google Scholar 

  • Leslie AG, Arnott S, Chandrasekaran R and Ratliff RL 1980 Polymorphism of DNA double helices. J. Mol. Biol. 143 49–72

    Article  PubMed  CAS  Google Scholar 

  • Malenkov G, Minchenkova L, Minyat E, Schyolkina A and Ivanov V 1975 The nature of B-A transition of DNA in solution. FEBSLetters 51 38–42

    Article  CAS  Google Scholar 

  • Manning GS 1978 The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Quart. Rev. Biophys. 11 179–246

    Article  CAS  Google Scholar 

  • Mazur J, Sarai A and Jernigan RL 1989 Sequence dependence of the B-A conformational transition of DNA. Biopolymers 28 1223–1233

    Article  PubMed  CAS  Google Scholar 

  • McConnell KJ and Beveridge DL 2000 DNA structure: what's in charge? J. Mol. Biol. 304 803–820

    Article  PubMed  CAS  Google Scholar 

  • Mehrotra PK and Beveridge DL 1980 Structural analysis of molecular solutions based on quasi-component distribution functions. application to [H2CO]aq at 25°C. J. Am. Chem. Soc. 102 4287–4294

    Article  CAS  Google Scholar 

  • Mezei M 1988 Modified proximity criteria for the analysis of the solvation of a polyfunctional solute. Molecular Simulation. 1 327–332

    Google Scholar 

  • Mezei M 2006 MMC: Monte Carlo program for computer simulation of molecular solutions (New York)

  • Mezei M and Beveridge DL 1981 Monte Carlo studies of the structure of dilute aqueous solutions of Li+, Na+, K+, F-, and Cl- . J. Chem. Phys. 74 6902–6910

    Article  CAS  Google Scholar 

  • Mezei M and Beveridge DL 1986 Structural chemistry of biomolecular hydration: the proximity criterion. Methods Enzymol. 127 21–47

    Article  PubMed  CAS  Google Scholar 

  • Nishimura Y, Torigoe C and Tsuboi M 1986 Salt induced B-A transition of poly(dG)*poly(dC) and the stabilization of A-form by its methylation. Nucleic Acids Res. 14 2737–2748

    Article  PubMed  CAS  Google Scholar 

  • Olson WK, Gorin AA, Lu XJ, Hock LM and Zhurkin VB 1998 DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc. Natl. Acad. Sci. USA 95 11163–11168

    Article  PubMed  CAS  Google Scholar 

  • Orozco M, Noy A and Perez A 2008 Recent advances in the study of nucleic acid flexibility by molecular dynamics. Curr. Opin. Struct. Biol. 18 185–193

    Article  PubMed  CAS  Google Scholar 

  • Pal SK, Zhao L, Xia T and Zewail AH 2003 Site- and sequence-selective ultrafast hydration of DNA. Proc. Natl. Acad. Sci. USA 100 13746–13751

    Article  PubMed  CAS  Google Scholar 

  • Perez A, Luque FJ and Orozco M 2007 Dynamics of B-DNA on the microsecond time scale. J. Am. Chem. Soc. 129 14739–14745

    Article  PubMed  CAS  Google Scholar 

  • Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, Laughton CA and Orozco M 2007 Refinement of the amber force field for nucleic acids. Improving the description of {alpha}/{gamma} conformers. Biophys. J. 92 3817–3829

    Article  PubMed  CAS  Google Scholar 

  • Pilet J and Brahms J 1972 Dependence of B-A conformational change on base composition. Nature New Biol. 236 99–100

    PubMed  CAS  Google Scholar 

  • Ponomarev SY, Thayer KM and Beveridge DL 2004 Ion motions in molecular dynamics simulations on DNA. Proc. Natl. Acad. Sci. U.S.A. 10114771–14775

    Article  PubMed  CAS  Google Scholar 

  • Privalov PL, Dragan AI, Robinson CC, Breslauer KJ, Remeta DP and Minetti CA 2007 What drives proteins into the major or minor grooves of DNA? J. Mol. Biol. 365 1–9

    Article  PubMed  CAS  Google Scholar 

  • Ravishanker G 1998 Molecular Dynamics Tool Chest 2.0 (Wesleyan: Wesleyan University)

    Google Scholar 

  • Reddy CK, Das A and Jayaram B 2001 Do water molecules mediate protein-DNA recognition? J. Mol. Biol. 314 619–632

    Article  PubMed  CAS  Google Scholar 

  • Richards FM 1977 Areas, volumes, packing and protein structure. Annu. Rev. Biophys. Bioeng. 6 151–176

    Article  PubMed  CAS  Google Scholar 

  • Robinson H and Wang AH 1996 Neomycin, spermine and hexaamminecobalt (III) share common structural motifs in converting B- to A-DNA. Nucleic Acids Res. 24 676–682

    Article  PubMed  CAS  Google Scholar 

  • Rueda M, Cubero E, Laughton CA and Orozoco M 2004 Exploring the counterion atmosphere around DNA: what can be learned from molecular dynamics simulations?. Biophys. J. 87 800–811

    Article  PubMed  CAS  Google Scholar 

  • Ruggiero NJ, Pereira de Souza F and Colombo MF 2001 Hydration effects on DNA double helix stability modulates ligand binding to natural DNA in response to changes in water activity. Cell Mol. Biol. (Noisy-le-grand) 47 801–814

    Google Scholar 

  • Ryckaert J-P, Ciccotti G and Berendsen HJ C 1977 Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23 327–341

    Article  CAS  Google Scholar 

  • Saenger W 1984 Principles of nucleic acid structure (New York: Springer Verlag)

    Book  Google Scholar 

  • Saenger W, Hunter WN and Kennard O 1986 DNA conformation is determined by economics in the hydration of phosphate groups. Nature 324 385–388

    Article  PubMed  CAS  Google Scholar 

  • Schneider B and Berman HM 1995 Hydration of the DNA bases is local. Biophys. J. 69 2661–2669

    Article  PubMed  CAS  Google Scholar 

  • Schneider B, Cohen D, and Berman HM 1992 Hydration of DNA bases: analysis of crystallographic data. Biopolymers 32 725–750

    Article  PubMed  CAS  Google Scholar 

  • Schneider B, Cohen DM, Schleifer L, Srinivasan AR, Olson WK and Berman HM 1993 A systematic method for studying the spatial distribution of water molecules around nucleic acid bases. Biophys. J. 65 2291–2303

    Article  PubMed  CAS  Google Scholar 

  • Schneider B, Patel K and Berman HM 1998 Hydration of the phosphate group in double-helical DNA. Biophys. J. 752422–2434

    Article  PubMed  CAS  Google Scholar 

  • Schwabe JW 1997 The role of water in protein-DNA interactions. Curr. Opin. Struct. Biol. 7 126–134

    Article  PubMed  CAS  Google Scholar 

  • Seeman NC, Rosenberg JM and Rich A 1976 Sequence-specific recognition of double helical nucleic acids by proteins. Proc. Natl. Acad. Sci. USA 73 804–808

    Article  PubMed  CAS  Google Scholar 

  • Sen S, Andreatta D, Sergei Y, Ponomarev, Beveridge DL and Berg MA 2009 Dynamics of water and ions near DNA: comparison of simulation to time-resolved stokes-shift experiments. J. Am. Chem. Soc. 131 1724–1735

    Article  PubMed  CAS  Google Scholar 

  • Shotton MW, Pope LH, Forsyth T, Langan P, Denny RC, Giesen U, Dauvergne M-T and Fuller W 1997 A high-angle neutron fibre diffraction study of the hydration of deuterated A-DNA. Biophys. Chem. 69 85–96

    Article  PubMed  CAS  Google Scholar 

  • Shui X, McFail-Isom L, Hu GG and Williams LD 1998 Structure of the potassium form of CGCGAATTCGCG: DNA deformation by electrostatic collapse around inorganic cations. Biochemistry 37 8341–8355

    Article  PubMed  CAS  Google Scholar 

  • Sims EG and Kim S-H 2003 Global mapping of nucleic acid conformational space: dinucleoside monophosphate conformations and transition pathways among conformational classes. Nucleic Acids Res. 31 5607–5616

    Article  PubMed  CAS  Google Scholar 

  • Sprous D, Young MA and Beveridge DL 1998 Molecular dynamics studies of the conformational preferences of a DNA double helix in water and in an ethanol/water mixture: Theoretical considerations of the A/B transition. J. Phys. Chem. 102 4658–4667

    CAS  Google Scholar 

  • Srinivasan J, Cheatham IIIT E, Cieplak P, Kollman PA and Case DA 1998 Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate - DNA helices. J. Am. Chem.Soc. 120 9401–9409

    Article  CAS  Google Scholar 

  • Stefl R and Koca J 2000 Unrestrained molecular dynamics simulations of [d(AT)5]2 duplex in aqueous solution: hydration and binding of sodium ions in the minor groove. J. Am. Chem.Soc. 122 5025–5033

    Article  CAS  Google Scholar 

  • Subramanian PS, Ravishanker G and Beveridge DL 1988 Theoretical considerations on the ‘spine of hydration’ in the minor groove of d(CGCGAATTCGCG) duplex: Monte Carlo computer simulation. Proc. Natl. Acad. Sci. USA 85 1836–1840

    Article  PubMed  CAS  Google Scholar 

  • Tereshko V, Minasov G and Egli M 1999 The Dickerson-Drew B-DNA dodecamer revisited at atomic resolution. J. Am. Chem. Soc. 121 470–471

    Article  CAS  Google Scholar 

  • Tolstorukov MY and Maleev VY 2000 Conformational transitions of DNA induced by changing water content of the sample: a theoretical study. J. Biomol. Struct. Dyn. 17 913–920

    Article  PubMed  CAS  Google Scholar 

  • Tolstorukov MY, Ivanov VI, Malenkov GG, Jernigan RL and Zhurkin VB 2001 Sequence-dependent B<-->A transition in DNA evaluated with dimeric and trimeric scales. Biophys. J. 81 3409–3421

    Article  PubMed  CAS  Google Scholar 

  • Tsodikov OV, Record Jr MT J and Sergeev YV 2002 A novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature. J. Comput. Chem. 23 600–609

    Article  PubMed  CAS  Google Scholar 

  • Tsui V and Case DA 2000 Molecular Dynamics Simulations of Nucleic Acids with a Generalized Born Solvation Model. J. Am. Chem. Soc. 122 2489–2498

    Article  CAS  Google Scholar 

  • Tunis MJ and Hearst JE 1968 On the hydration of DNA. I. Preferential hydration and stability of DNA in concentrated trifluoroacetate solution. Biopolymers 6 1325–1344

    Article  PubMed  CAS  Google Scholar 

  • Umehara T, Kuwabara S, Mashimo S and Yagihara S 1990 Dielectric Study on Hydration of B-DNA, A-DNA and Z-DNA. Biopolymers 30 649–656

    Article  PubMed  CAS  Google Scholar 

  • Umrania Y, Nikjoo H and Goodfellow JM 1995 A knowledge-based model of DNA hydration. Int. J. Radiat. Biol. 67 145–152.

    Article  PubMed  CAS  Google Scholar 

  • Varnai P and Zakrzewska K 2004 DNA and its counterions: a molecular dynamics study. Nucleic Acids Res. 32 4269–4280

    Article  PubMed  CAS  Google Scholar 

  • Westhof E and Beveridge DL 1989 Hydration of nucleic acids. in water science reviews: The molecules of life (ed) F Franks. (Cambridge: Cambridge University Press) pp 24–136

  • York DM, Yang W, Lee H, Darden T and Pedersen LG 1995 Toward the accurate modeling of DNA: The importance of long-range electrostatics. J. Am. Chem. Soc. 117 5001–5002

    Article  CAS  Google Scholar 

  • Young MA, Jayaram B and Beveridge DL 1997 Intrusion of Counterions into the spine of hydration in the minor groove of B-DNA: Fractional occupancy of electronegative pockets. J. Am. Chem. Soc. 119 59–69

    Article  CAS  Google Scholar 

  • Young MA, Ravishanker G and Beveridge DL 1997 A 5-nanosecond molecular dynamics trajectory for B-DNA: Analysis of structure, motions and solvation. Biophys. J. 73 2313–2336

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from MRAC award CHE050040P, SDSC account WEU202, NIH grant GM37909 to DLB, The Keck Center for Integrative Genomics at Wesleyan University and the HHMI grant 52005211. We thank the participants of the Ascona B-DNA Consortium for kindly sharing with us the trajectories of the 39 DNA sequences. DLB acknowledges support from Dr Joshua Boger and the WE Coffman family.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L Beveridge.

Additional information

[Dixit SB, Mezei M and Beveridge DL 2012 Studies of base pair sequence effects on DNA salvation based on all-atom molecular dynamics simulations. J. Biosci. 37 1–23] DOI 10.1007/s12038-012-9223-5

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 329 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dixit, S.B., Mezei, M. & Beveridge, D.L. Studies of base pair sequence effects on DNA solvation based on all-atom molecular dynamics simulations. J Biosci 37, 399–421 (2012). https://doi.org/10.1007/s12038-012-9223-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-012-9223-5

Keywords

Navigation