Skip to main content
Log in

RNA targeting by small molecules: Binding of protoberberine, benzophenanthridine and aristolochia alkaloids to various RNA structures

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Studies on RNA targeting by small molecules to specifically control certain cellular functions is an area of remarkable current interest. For this purpose, a basic understanding of the molecular aspects of the interaction of small molecules with various RNA structures is essential. Alkaloids are a group of natural products with potential therapeutic utility, and very recently, their interaction with many RNA structures have been reported. Especially noteworthy are the protoberberines and aristolochia alkaloids distributed widely in many botanical families. Many of the alkaloids of these group exhibit excellent binding affinity to many RNA structures that may be exploited to develop RNA targeted therapeutics. This review attempts to present the current status on the understanding of the interaction of these alkaloids with various RNA structures, mainly highlighting the biophysical aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Bhadra K and Suresh Kumar G 2011 Therapeutic potential of nucleic acid binding isoquinolines alkaloids: binding aspects and implications for drug design. Med. Res. Rev. 31 821–862

    Article  PubMed  CAS  Google Scholar 

  • Biver T, Boggioni A, Garcia B, Leal JM, Ruis R, Secco F and Venturini M 2009 New aspects of the interaction of the antibiotic coralyne with RNA: coralyne induces triple helix formation in poly(rA).poly(rU). Nucleic Acids Res. 38 1697–1710

    Article  PubMed  Google Scholar 

  • Byrne RT, Konevega AL, Rodnina MV and Antson AA 2010 The crystal structure of unmodified tRNAPhe from Escherichia coli. Nucleic Acids Res. 38 4154–4162

    Article  PubMed  CAS  Google Scholar 

  • Cassady JM, Baird WM and Chang CJ 1990 Natural products as a source of potential cancer chemotherapeutic and chemopreventive agents. J. Nat. Prod. 53 23–41

    Article  PubMed  CAS  Google Scholar 

  • Centikol P and Hud NV 2009 Molecular recognition of poly(A) by small ligands: an alternative method of analysis reveals nanomolar, cooperative and shape-selective binding. Nucleic Acids Res. 37 611–621

    Article  Google Scholar 

  • Chao PW and Chow CS 2007 Monitoring aminoglycoside-induced conformational changes in 16 S rRNA through acrylamide quenching. Bioorg. Med. Chem. 15 3825–3831

    Article  PubMed  CAS  Google Scholar 

  • Das S, Suresh Kumar G, Ray A and Maiti M 2003 Spectroscopic and thermodynamic studies on the binding of sanguinarine and berberine to triple and double helical DNA. J. Biomol. Struct. Dyn. 20 703–713

    Article  PubMed  CAS  Google Scholar 

  • Das A, Bhadra K, Achari B, Chakraborty P and Suresh Kumar G 2011a Interaction of aristololactam-β-D-glucoside and daunomycin with poly(A): spectroscopic and calorimetric studies. Biophys. Chem. 155 10–19

    Article  PubMed  CAS  Google Scholar 

  • Das A, Bhadra K and Suresh Kumar G 2011b Targeting RNA by small molecules: comparative structural and thermodynamic aspects of aristololactam-β-D-glucoside and daunomycin binding to tRNAphe. PLoS ONE 6 e23186

    Article  PubMed  CAS  Google Scholar 

  • Denny WA 1989 DNA intercalating ligands as anticancer drugs: prospects for future design. Anticancer Drug Des. 4 241–263

    PubMed  CAS  Google Scholar 

  • Esau CC and Monia BP 2007 Therapeutic potential for micro RNAs. Adv. Drug Deliv. Rev. 59 101–114

    Article  PubMed  CAS  Google Scholar 

  • Felsenfeld G, Davies DR and Rich A 1957 Formation of a three stranded polynucleotide molecule. J. Am. Chem. Soc. 79 2023–2024

    Article  CAS  Google Scholar 

  • Fire AZ 2007 Gene silencing by double-stranded RNA (Nobel Lecture). Angew. Chem. Int. Ed. 46 6966–6984

    Article  CAS  Google Scholar 

  • Foloppe N, Matassova N and Aboul-Ela F 2006 Towards the discovery of drug-like RNA ligands? Drug Discov. Today 11 1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Fulle S and Gohlke H 2010 Molecular recognition of RNA: challenges for modelling interactions and plasticity. J. Mol. Recognit. 23 220–231

    PubMed  CAS  Google Scholar 

  • Gallego J and Varani G 2001 Targeting RNA with small-molecule drugs: therapeutic opportunities and chemical challenges. Acc. Chem. Res. 34 836–843

    Article  PubMed  CAS  Google Scholar 

  • Giri P and Suresh Kumar G 2007 Specific binding and self-structure induction to poly(A) by the cytotoxic plant alkaloid sanguinarine. Biochim. Biophys. Acta 1770 1419–1426

    Article  PubMed  CAS  Google Scholar 

  • Giri P and Suresh Kumar G 2008a Self-structure induction in single stranded poly(A) by small molecules: studies on DNA intercalators, partial intercalators and groove binding molecules. Arch. Biochem. Biophys. 474 183–192

    Article  PubMed  CAS  Google Scholar 

  • Giri P and Suresh Kumar G 2008b Spectroscopic and calorimetric studies on the binding of the phototoxic and cytotoxic plant alkaloid sanguinarine with double helical poly(A). J. Photochem. Photobiol. A Chem. 194 111–121

    Article  CAS  Google Scholar 

  • Giri P and Suresh Kumar G 2008c Binding of protoberberines alkaloid coralyne with double stranded poly(A): a biophysical study. Mol. BioSyst. 4 341–348

    Article  PubMed  CAS  Google Scholar 

  • Giri P and Suresh Kumar G 2009 Molecular aspects of small molecules-poly(A) interaction: an approach to RNA based drug design. Curr. Med. Chem. 16 965–987

    Article  PubMed  CAS  Google Scholar 

  • Giri P and Suresh Kumar G 2010a Molecular recognition of poly(A) targeting by protoberberine alkaloids: in vitro biophysical studies and biological perspectives. Mol. BioSyst. 6 81–88

    Article  PubMed  CAS  Google Scholar 

  • Giri P and Suresh Kumar G 2010b Isoquinoline alkaloids andtheir binding with polyadenylic acid: potential basis of therapeutic action. Mini Rev. Med. Chem. 10 568–577

    Article  PubMed  CAS  Google Scholar 

  • Giri P, Hossain M and Suresh Kumar G 2006a RNA specific molecules: cytotoxic plant alkaloid palmatine binds strongly to poly(A). Bioorg. Med. Chem. Lett. 16 2364–2368

    Article  PubMed  CAS  Google Scholar 

  • Giri P, Hossain M and Suresh Kumar G 2006b Molecular aspects on the specific interaction of cytotoxic plant alkaloid palmatine to poly(A). Int. J. Biol. Macromol. 39 210–221

    Article  PubMed  CAS  Google Scholar 

  • Graves D E and Velea LM 2000 Intercalative binding of small molecules to nucleic acids. Curr. Org. Chem. 4 915–929

    Article  CAS  Google Scholar 

  • Grycova L, Dostal J and Marek R 2007 Quaternary protoberberine alkaloids. Phytochemistry 68 150–175

    Article  PubMed  CAS  Google Scholar 

  • Harford JB 1995 Translation-targeted therapeutics for viral diseases. Gene Expr. 4 357–367

    PubMed  CAS  Google Scholar 

  • Hermann T 2002 Rational ligand design for RNA: The role of static structure and conformational flexibility in target recognition. Biochimie 84 869–875

    Article  PubMed  CAS  Google Scholar 

  • Hossain M, Kabir A and Suresh Kumar G 2012a Binding of the anticancer alkaloid sanguinarine to tRNAphe: spectroscopic and calorimetric studies J. Biomol. Struct. Dyn. 30 215–225

  • Hossain M, Kabir A and Suresh Kumar G 2012b Binding of the phenothiazinium dye methylene blue with single stranded polyriboadenylic acid. Dyes Pigments 92 1376–1383

    Article  CAS  Google Scholar 

  • Hurley LH 2002 DNA and its associated processes as targets for cancer therapy. Nat. Rev. Cancer 2 188–200

    Article  PubMed  CAS  Google Scholar 

  • Islam MM and Suresh Kumar G 2008 RNA targeting by small molecule alkaloids. Studies on the binding of berberine and palmatine to polyribonucelotides and comparison to ethidium. J. Mol. Struct. 875 382–391.

    Article  CAS  Google Scholar 

  • Islam MM and Suresh Kumar G 2009 Small molecule-RNA interaction. spectroscopic and calorimetric studies on the binding by the cytotoxic protoberberines alkaloid coralyne to single stranded polyribonucleotides. Biochim. Biophys. Acta 1790 829–839

    Article  PubMed  CAS  Google Scholar 

  • Islam MM, Sinha R and Suresh Kumar G 2007 RNA binding small molecules: studies on t-RNA binding by cytotoxic plant alkaloids berberine, palmatine and the comparison to ethidium. Biophys. Chem. 125 508–520

    Article  PubMed  CAS  Google Scholar 

  • Islam MM, Pandya P, Roy Chowdhuri SR, Kumar S and Suresh Kumar G 2008 Binding of DNA binding alkaloids berberine and palmatine to tRNA and comparison to ethidium: Spectroscopic and molecular modelling studies. J. Mol. Struct. 891 498–507

    Article  CAS  Google Scholar 

  • Islam MM, Pandya P, Roy Chowdhuri SR, Kumar S and Suresh Kumar G 2009a RNA targeting through binding of small molecules: studies on tRNA binding by the cytotoxic protoberberines alkaloid coralyne. Mol. BioSyst. 5 244–354

    Article  PubMed  CAS  Google Scholar 

  • Islam MM, Roy Chowdhury S and Suresh Kumar G 2009b Spectroscopic and calorimetric studies on the binding of alkaloids berberine, palmatine and coralyne to double stranded RNA polynucleotides. J. Phys. Chem. B 113 1210–1224

    Article  PubMed  CAS  Google Scholar 

  • Islam, MM, Basu A and Suresh Kumar G 2011 Binding of 9-O-(ω-amino) alkyl ether analogues of the plant alkaloid berberine to poly(A): insights into self-structure induction. Med. Chem. Commun. 2 631–637

    Article  CAS  Google Scholar 

  • Kaul M and Pilch DS 2002 Thermodynamics of aminoglycoside-rRNA recognition: The binding of neomycin-class aminoglycosides to the A site of 16 S rRNA. Biochemistry 41 7695–7706

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Suddath FL, Quigley GJ, McPherson A, Sussman JL, Wang AH, Seeman NC and Rich A 1974 Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185 435–440

    Article  PubMed  CAS  Google Scholar 

  • Kopka ML, Yoon C, Goodsell D, Pjura P and Dickerson RE 1985 The molecualr origin of DNA-drug specificity in netropsin and distamycin. Proc. Natl. Acad. Sci. USA 82 1376–1380

    Article  PubMed  CAS  Google Scholar 

  • Latimer LJP, Payton N, Forsyth G and Lee JS 1995 The binding of analogues of coralyne and related heterocycles to DNA triplexes. Biochem. Cell Biol. 73 11–18

    Google Scholar 

  • Lee JS, Latimer LJP and Hampel KJ 1993 Coralyne binds to both T.A.T and C.G.C + triplexes. Biochemistry 32 5591–5597

    Article  PubMed  CAS  Google Scholar 

  • Lerman LS 1961 Structural considerations in the interaction of DNA and acridines. J. Mol. Biol. 3 18–30

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Sall A and Yang D 2008 Micro RNA: an emerging therapeutic target and intervention tool. Int. J. Mol. Sci. 9 978–999

    Article  PubMed  CAS  Google Scholar 

  • Maiti M and Suresh Kumar G 2007 Molecular aspects on the interaction of protoberberines, benzophenanthridine, and aristolochia group of alkaloids with nucleic acid structure and biological perspectives. Med. Res. Rev. 27 649–695

    Article  PubMed  CAS  Google Scholar 

  • Maiti M and Suresh Kumar G 2009 Biophysical aspects and biological implications of the interaction of benzophenanthridine alkaloids with DNA. Biophys. Rev. 1 119–129

    Article  CAS  Google Scholar 

  • Maiti M and Suresh Kumar G 2010 Polymorphic nucleic acid binding of bioactive isoquinolines alkaloids and their role in cancer. J. Nucleic Acids 2010 doi:10.4061/2010/593408

  • Martinez R and Chacon-Garcia L 2005 The search of DNA-intercalators as antitumoral drugs: what it worked and what did not work. Curr. Med. Chem. 12 127–151

    PubMed  CAS  Google Scholar 

  • McGhee JD and von Hippel PH 1974 Theoretical aspects of DNA-protein interactions: Co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J. Mol. Biol . 86 469–489

    Article  PubMed  CAS  Google Scholar 

  • Meister G and Tusch T 2004 Mechanisms of gene silencing by double-stranded RNA. Nature 431 343–349

    Article  PubMed  CAS  Google Scholar 

  • Moraru-Allen AA, Cassidy S, Alvarez JLA, Fox KR, Brown T and Lane AN 1997 Coralyne has a preference for intercalation between TA.T triples in interamolecular DNA triple helices. Nucleic Acids Res. 25 1890–1896

    Article  PubMed  CAS  Google Scholar 

  • Nandi R, Debnath D and Maiti M 1990 Interactions of berberine with poly(A) and tRNA. Biochim. Biophys. Acta 1049 339–342

    Article  PubMed  CAS  Google Scholar 

  • Neidle 2001 DNA minor-groove recognition by small molecules. Nat. Prod. Rep. 18 291–309

    Article  PubMed  CAS  Google Scholar 

  • Nelson P, Kiriakidou M, Sharma A, Maniataki E and Mourelatos Z 2003 The micro RNA world: Small is mighty. Trends Biochem. Sci. 28 534–540

    Article  PubMed  CAS  Google Scholar 

  • Noller HF 1991 Ribosomal RNA and translation. Annu. Rev. Biochem. 60 191–227

    Article  PubMed  CAS  Google Scholar 

  • Petrovic AG and Polavarapu PL 2005 Structural transitions in polyriboadenylic acid induced by the changes in pH and temperature: vibrational circular dichroism study in solution and film states. J. Phys. Chem. B 109 23698–23705

    Article  PubMed  CAS  Google Scholar 

  • Ray A, Suresh Kumar G, Das S and Maiti M 1999 Spectroscopic studies on the interaction of aristololactam-β-D glucoside with DNA and RNA double and triple helices: A comparative study. Biochemistry 38 6239–6247

    Article  PubMed  CAS  Google Scholar 

  • Reddy BSP, Sondhi SM and Lown JW 1999 Synthetic DNA minor groove binding agents. Pharmacol. Therap. 84 1–111

    Article  CAS  Google Scholar 

  • Rich A, Davies DR, Crick FH and Watson JD 1961 The molecular structure of polyadenylic acid. J. Mol. Biol. 3 71–86

    Article  PubMed  CAS  Google Scholar 

  • Robertus JD, Ladner J E, Finch JT, Rhodes D, Brown RS, Clark BF and Klug A 1974 Structure of yeast phenylalanine tRNA at 3 Å resolution. Nature (London) 250 546–551

    Article  CAS  Google Scholar 

  • Roy Chowdhuri S, Islam MM and Suresh Kumar G 2010 Binding of the anticancer alkaloid sanguinarine to double stranded RNAs: insights into the structural and energetics aspects. Mol. BioSyst. 6 1265–1276

    Article  Google Scholar 

  • Scatchard G 1949 The attraction of proteins for small molecules and ions. Ann. NY Acad. Sci. 51 660–672

    Article  CAS  Google Scholar 

  • Sen A and Maiti M 2002 Interaction of sanguinarine with double stranded RNA structures. Indian J. Biochem. Biophys. 39 106–112

    CAS  Google Scholar 

  • Sinha R and Suresh Kumar G 2009 Interaction of isoquinolines alkaloids with an RNA triplex: structural and thermodynamic studies of berberine, palmatine, and coralyne binding to poly(U).poly(A)*poly(U). J. Phys. Chem. B 113 12410–13420

    Article  Google Scholar 

  • Topalian SL, Kaneko S, Gonzales MI, Bond GL, Ward Y and Manley JL 2001 Identification and functional characterization of neo-poly(A) polymerase, an RNA processing enzyme overexpressed in human tumors. Mol. Cell Biol. 21 5614–5623

    Article  PubMed  CAS  Google Scholar 

  • Topalian SL, Gonzales MI, Ward Y, Wang X and Wang RF 2002 Revelation of a cryptic major histocompatibility complex class II-restricted tumor epitope in a novel RNA processing enzyme. Cancer Res. 62 5505–5509

    PubMed  CAS  Google Scholar 

  • Tor Y 1999 RNA and the small molecule world. Angew. Chem. Int. Ed. 38 1579–1582

    Article  CAS  Google Scholar 

  • Vicens Q and Westhof E 2003 RNA as a drug target: the case of aminoglycosides. Chem. BioChem. 4 1018–1023

    CAS  Google Scholar 

  • Walter F, Vicens Q and Westhof E 1999 Aminoglycoside-RNA interactions. Curr. Opin. Chem. Biol. 3 694–704

    Article  PubMed  CAS  Google Scholar 

  • Waring MJ 1981 DNA modification and cancer. Ann. Rev. Biochem. 50 159–192

    Article  PubMed  CAS  Google Scholar 

  • Wemmer DE and Dervan PE 1997 Targeting the minor groove of DNA. Curr. Opin. Struct. Biol. 7 355–361

    Article  PubMed  CAS  Google Scholar 

  • Wilson, WD and Li K 2000 Targeting RNA with small molecules. Curr. Med. Chem. 7 73–98

    PubMed  CAS  Google Scholar 

  • Wink M 2007 Molecular modes of action of cytotoxic alkaloids: From DNA intercalation, spindle poisoning, topoisomerase inhibition to apoptosis and multiple drug resistance; in The Alkaloids: Chemistry and Biology vol 64 (ed) GA Cordell (New York: Elsevier Science) pp 1–47

    Google Scholar 

  • Xing F, Song G, Ren J, Chaires JB and Qu X 2005 Molecular recognition of nucleic acids: coralyne binds strongly to poly(A). FEBS Lett. 579 5035–5039

    Article  PubMed  CAS  Google Scholar 

  • Yadav RC, Suresh Kumar G, Bhadra K, Giri P, Sinha R, Pal S and Maiti M 2005 Berberine, a strong polyriboadenylic acid binding plant alkaloid: spectroscopic, viscometric and thermodynamic study. Bioorg. Med. Chem. 13 165–174

    Article  PubMed  CAS  Google Scholar 

  • Zimmer C and Wahnet U 1986 Non intercalating DNA-binding ligands: specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material. Prog. Biophys. Molec.Biol. 47 31–112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author expresses his sincere thanks to all the erstwhile and current colleagues of the Biophysical Chemistry Laboratory, CSIR-IICB, Kolkata, for contributing to the RNA binding studies of the alkaloids at various stages. The RNA binding studies in the author’s laboratory were supported by the CSIR network project on Comparative genomics and biology of noncoding RNA in the human genome (NWP0036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopinatha Suresh Kumar.

Additional information

[Suresh Kumar G 2012 RNA targeting by small molecules: Binding of protoberberine, benzophenanthridine and aristolochia alkaloids to various RNA structures. J. Biosci. 37 1–14] DOI

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, G.S. RNA targeting by small molecules: Binding of protoberberine, benzophenanthridine and aristolochia alkaloids to various RNA structures. J Biosci 37, 539–552 (2012). https://doi.org/10.1007/s12038-012-9217-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-012-9217-3

Keywords

Navigation