Journal of Biosciences

, Volume 36, Issue 2, pp 297–307 | Cite as

Growth inhibitory, apoptotic and anti-inflammatory activities displayed by a novel modified triterpenoid, cyano enone of methyl boswellates

  • Palaniyandi Ravanan
  • Sanjay K Singh
  • G S R Subba Rao
  • Paturu Kondaiah


Triterpenoids are pentacyclic secondary metabolites present in many terrestrial plants. Natural triterpenoids have been reported to exhibit anti-inflammatory and anti-carcinogenic activities. Here, we show that modifications of ring A of boswellic acid (2 cyano, 3 enone) resulted in a highly active growth inhibitory, anti-inflammatory, pro-differentiative and anti-tumour triterpenoid compound called cyano enone of methyl boswellates (CEMB). This compound showed cytotoxic activity on a number of cancer cell lines with IC50 ranging from 0.2 to 0.6 μM. CEMB inhibits DNA synthesis and induces apoptosis in A549 cell line at 0.25 μM and 1 μM concentrations, respectively. CEMB induces adipogenic differentiation in 3T3-L1 cells at a concentration of 0.1 μM. Finally, administration of CEMB intra-tumourally significantly inhibited the growth of C6 glioma tumour xenograft in immuno-compromised mice. Collectively, these results suggest that CEMB is a very potent anti-tumour compound.


Cancer therapeutics cytotoxicity differentiation natural products 

Abbreviations used






2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid


cyano enone of methyl boswellates






Dulbucco’s modified eagle’s medium


dimethyl sulphoxide


Dulbucco’s phosphate buffer saline


fetal bovine serum




50% inhibitory concentration


interferon interferon-γ


induced nitric oxide synthase


3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide)


N-(1-naphthyl) ethyl-enediamine


transforming growth factor factor-β


  1. Aggarwal BB, Shishodia S, Sandur SK, Pandey MK and Sethi G 2006 Inflammation and cancer how hot is the link? Biochem. Pharmacol. 72 1605–1621PubMedCrossRefGoogle Scholar
  2. Brookes PS, Morse K, Ray D, Tompkins A, Young SM, Hilchey S, Salim S, Konopleva M, Andreeff M, Phipps R and Bernstein SH 2007 The triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid and its derivatives elicit human lymphoid cell apoptosis through a novel pathway involving the unregulated mitochondrial permeability transition pore. Cancer Res. 67 1793–1802PubMedCrossRefGoogle Scholar
  3. Ding A, Nathan CF, Graycar J, Derynck R, Stuehr DJ and Srimal S 1990 Macrophage deactivating factor and transforming growth factors-beta 1 -beta 2 and -beta 3 inhibit induction of macrophage nitrogen oxide synthesis by IFN-gamma. J. Immunol. 145 940–944PubMedGoogle Scholar
  4. Gayathri B, Manjula N, Vinaykumar KS, Lakshmi BS and Balakrishnan A 2007 Pure compound from Boswellia serrata extract exhibits anti-inflammatory property in human PBMCs and mouse macrophages through inhibition of TNFalpha, IL-1beta, NO and MAP kinases. Int. Immunopharmacol. 7 473–482PubMedCrossRefGoogle Scholar
  5. Hail N Jr, Konopleva M, Sporn M, Lotan R and Andreeff M 2004 Evidence supporting a role for calcium in apoptosis induction by the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid CDDO. J. Biol. Chem. 279 11179–11187PubMedCrossRefGoogle Scholar
  6. Hansen JB, Petersen RK, Larsen BM, Bartkova J, Alsner J and Kristiansen K 1999 Activation of peroxisome proliferator-activated receptor gamma bypasses the function of the retinoblastoma protein in adipocyte differentiation. J. Biol. Chem. 274 2386–2393PubMedCrossRefGoogle Scholar
  7. Honda T, Rounds BV, Gribble GW, Suh N, Wang Y and Sporn MB 1998 Design and synthesis of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, a novel and highly active inhibitor of nitric oxide production in mouse macrophages. Bioorg. Med. Chem. Lett. 8 2711–2714PubMedCrossRefGoogle Scholar
  8. Honda T, Rounds BV, Bore L, Favaloro FG Jr, Gribble GW, Suh N, Wang Y and Sporn MB 1999 Novel synthetic oleanane triterpenoids a series of highly active inhibitors of nitric oxide production in mouse macrophages. Bioorg. Med. Chem. Lett. 9 3429–3434PubMedCrossRefGoogle Scholar
  9. Hyer ML, Shi R, Krajewska M, Meyer C, Lebedeva IV, Fisher PB and Reed JC 2008 Apoptotic activity and mechanism of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic-acid and related synthetic triterpenoids in prostate cancer. Cancer Res. 68 2927–2933PubMedCrossRefGoogle Scholar
  10. Ito Y, Pandey P, Place A, Sporn MB, Gribble GW, Honda T, Kharbanda S and Kufe D 2000 The novel triterpenoid 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid induces apoptosis of human myeloid leukemia cells by a caspase-8-dependent mechanism. Cell Growth Differ. 11 261–267PubMedGoogle Scholar
  11. Ito Y, Pandey P, Sporn MB, Datta R, Kharbanda S and Kufe D 2001 The novel triterpenoid CDDO induces apoptosis and differentiation of human osteosarcoma cells by a caspase-8 dependent mechanism. Mol. Pharmacol. 59 1094–1099PubMedGoogle Scholar
  12. Kim KB, Lotan R, Yue P, Sporn MB, Suh N, Gribble GW, Honda T, Wu GS, Hong WK and Sun SY 2002 Identification of a novel synthetic triterpenoid, methyl-2-cyano-3,12-dioxooleana-1,9-dien-28-oate, that potently induces caspase-mediated apoptosis in human lung cancer cells. Mol. Cancer Ther. 1 177–184PubMedGoogle Scholar
  13. Konopleva M, Tsao T, Ruvolo P, Stiouf I, Estrov Z, Leysath CE, Zhao S, Harris D, et al. 2002 Novel triterpenoid CDDO-Me is a potent inducer of apoptosis and differentiation in acute myelogenous leukemia. Blood 99 326–335PubMedCrossRefGoogle Scholar
  14. Konopleva M, Tsao T, Estrov Z, Lee RM, Wang RY, Jackson CE, McQueen T, Monaco G, et al. 2004 The synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid induces caspase-dependent and -independent apoptosis in acute myelogenous leukemia. Cancer Res. 64 7927–7935PubMedCrossRefGoogle Scholar
  15. Konopleva M, Zhang W, Shi YX, McQueen T, Tsao T, Abdelrahim M, Munsell MF, Johansen M, et al. 2006 Synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid induces growth arrest in HER2-overexpressing breast cancer cells. Mol. Cancer Ther. 5 317–328PubMedCrossRefGoogle Scholar
  16. Korsmeyer SJ 1992 Bcl-2 initiates a new category of oncogenes regulators of cell death. Blood 80 879–886PubMedGoogle Scholar
  17. Lala PK and Orucevic A 1998 Role of nitric oxide in tumor progression lessons from experimental tumors. Cancer Metastasis Rev. 17 91–106PubMedCrossRefGoogle Scholar
  18. Lapillonne H, Konopleva M, Tsao T, Gold D, McQueen T, Sutherland RL, Madden T and Andreeff M 2003 Activation of peroxisome proliferator-activated receptor gamma by a novel synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid induces growth arrest and apoptosis in breast cancer cells. Cancer Res. 63 5926–5939PubMedGoogle Scholar
  19. Liby K, Honda T, Williams CR, Risingsong R, Royce DB, Suh N, Dinkova-Kostova AT, Stephenson KK, et al. 2007a Novel semisynthetic analogues of betulinic acid with diverse cytoprotective, antiproliferative, and proapoptotic activities. Mol. Cancer Ther. 6 2113–2119PubMedCrossRefGoogle Scholar
  20. Liby KT, Yore MM and Sporn MB 2007b Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat. Rev. Cancer 7 357–369PubMedCrossRefGoogle Scholar
  21. Lu H, Ouyang W and Huang C 2006 Inflammation, a key event in cancer development. Mol. Cancer Res. 4 221–233PubMedCrossRefGoogle Scholar
  22. Palmer RM, Ashton DS and Moncada S 1988 Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature (London) 333 664–666CrossRefGoogle Scholar
  23. Petronelli A, Saulle E, Pasquini L, Petrucci E, Mariani G, Biffoni M, Ferretti G, Scambia G, et al. 2009 High sensitivity of ovarian cancer cells to the synthetic triterpenoid CDDO-Imidazolide. Cancer Lett. 282 214–228PubMedCrossRefGoogle Scholar
  24. Place AE, Suh N, Williams CR, Risingsong R, Honda T, Honda Y, Gribble GW, Leesnitzer LM, et al. 2003 The novel synthetic triterpenoid, CDDO-imidazolide, inhibits inflammatory response and tumor growth in vivo. Clin. Cancer Res. 9 2798–2806PubMedGoogle Scholar
  25. Radomski MW, Palmer RM and Moncada S 1990 An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc. Nat. Acad. Sci. USA 87 5193–5197PubMedCrossRefGoogle Scholar
  26. Reed JC 1997 Double identity for proteins of the Bcl-2 family. Nature (London) 387 773–776CrossRefGoogle Scholar
  27. Samudio I, Konopleva M, Hail N Jr, Shi Y , McQueen T, Hsu T, Evans R, Honda T, et al. 2005 2-Cyano-3,12-dioxooleana-1,9-dien-28-imidazolide CDDO-Im directly targets mitochondrial glutathione to induce apoptosis in pancreatic cancer. J. Biol. Chem. 280 36273–36282PubMedCrossRefGoogle Scholar
  28. Samudio I, Konopleva M, Pelicano H, Huang P, Frolova O, Bornmann W, Ying Y, Evans R, Contractor R and Andreeff M 2006 A novel mechanism of action of methyl-2-cyano-3,12 dioxoolean-1,9 diene-28-oate direct permeabilization of the inner mitochondrial membrane to inhibit electron transport and induce apoptosis. Mol. Pharmacol. 69 1182–1193PubMedCrossRefGoogle Scholar
  29. Subba Rao GS, Kondaiah P, Singh SK, Ravanan P and Sporn MB 2008 Chemical modifications of natural triterpenes - glycyrrhetinic and boswellic acids evaluation of their biological activity. Tetrahedron 64 11541–11548PubMedCrossRefGoogle Scholar
  30. Suh N, Wang Y, Honda T, Gribble GW, Dmitrovsky E, Hickey WF, Maue RA, Place AE, et al. 1999 A novel synthetic oleanane triterpenoid, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, with potent differentiating, antiproliferative, and anti-inflammatory activity. Cancer Res. 59 336–341PubMedGoogle Scholar
  31. Wajapeyee N and Somasundaram K 2003 Cell cycle arrest and apoptosis induction by activator protein 2alpha AP-2alpha and the role of p53 and p21WAF1/CIP1 in AP-2alpha-mediated growth inhibition. J. Biol. Chem. 278 52093–52101PubMedCrossRefGoogle Scholar
  32. Wang Y, Porter WW, Suh N, Honda T, Gribble GW, Leesnitzer LM, Plunket KD, Mangelsdorf DJ, et al. 2000 A synthetic triterpenoid, 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid CDDO , is a ligand for the peroxisome proliferator-activated receptor gamma. Mol. Endocrinol. 14 1550–1556PubMedCrossRefGoogle Scholar
  33. Yang E and Korsmeyer SJ 1996 Molecular thanatopsis a discourse on the BCL2 family and cell death. Blood 88 386–401PubMedGoogle Scholar
  34. Yawata A, Adachi M, Okuda H, Naishiro Y, Takamura T, Hareyama M, Takayama S, Reed JC and Imai K 1998 Prolonged cell survival enhances peritoneal dissemination of gastric cancer cells. Oncogene 16 2681–2686PubMedCrossRefGoogle Scholar
  35. Zou W, Yue P, Khuri FR and Sun SY 2008 Coupling of endoplasmic reticulum stress to CDDO-Me-induced up-regulation of death receptor 5 via a CHOP-dependent mechanism involving JNK activation. Cancer Res. 68 7484–7492PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2011

Authors and Affiliations

  • Palaniyandi Ravanan
    • 1
    • 3
  • Sanjay K Singh
    • 2
  • G S R Subba Rao
    • 2
  • Paturu Kondaiah
    • 1
  1. 1.Department of Molecular ReproductionDevelopment and GeneticsBangaloreIndia
  2. 2.Department of Organic ChemistryIndian Institute of ScienceBangaloreIndia
  3. 3.Centre for Biomedical Research, School of Biosciences and TechnologyVellore Institute of Technology UniversityVelloreIndia

Personalised recommendations