Journal of Biosciences

, Volume 36, Issue 1, pp 97–103 | Cite as

In vivo NMR study of yeast fermentative metabolism in the presence of ferric irons

  • Maso Ricci
  • Silvia Martini
  • Claudia Bonechi
  • Daniela Braconi
  • Annalisa Santucci
  • Claudio Rossi
Article
  • 83 Downloads

Abstract

Mathematical modelling analysis of experimental data, obtained with in vivo NMR spectroscopy and 13C-labelled substrates, allowed us to describe how the fermentative metabolism in Saccharomyces cerevisiae, taken as eukaryotic cell model, is influenced by stress factors. Experiments on cellular cultures subject to increasing concentrations of ferric ions were conducted in order to study the effect of oxidative stress on the dynamics of the fermentative process. The developed mathematical model was able to simulate the cellular activity, the metabolic yield and the main metabolic fluxes occurring during fermentation and to describe how these are modulated by the presence of ferric ions.

Keywords

Ethanol yield iron metabolism mathematical modelling oxidative stress in vivo NMR Saccharomyces cerevisiae 

References

  1. Aisen P, Enns C and Wessling-Resnick M 2001 Chemistry and biology of eukaryotic iron metabolism. Int. J. Biochem. Cell Biol. 33 940–995CrossRefGoogle Scholar
  2. Beechem M 1992 Global analysis of Biochemical and biophysical data. Methods Enzymol. 210 37–54PubMedCrossRefGoogle Scholar
  3. Costa V and Moradas-Ferreira P 2001 Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Mol. Aspect. Med. 22 217–246PubMedCrossRefGoogle Scholar
  4. Curto R, Sorribas A and Cascante M 1995 Theory and metabolic control analysis: model definition and momenclature. Math. Biosci. 130 25–50PubMedCrossRefGoogle Scholar
  5. De Deken RH 1996 The Crabtree effect: a regulatory system in yeast. J. Gen. Microbiol. 44 149–156Google Scholar
  6. den Hollander JA, Brown TR, Ugurbil K and Shulman RG 1979 13C nuclear magnetic resonance studies of anaerobic glycolysis in suspensions of yeast cells. Proc. Natl. Acad. Sci. USA 205 6096–6100CrossRefGoogle Scholar
  7. Estruch F 2000 Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol. Rev. 24 469–486PubMedCrossRefGoogle Scholar
  8. Fiechter A, Fuhrmann GF and Kappeli O 1981 Regulation of glucose metabolism in growing yeast cells. Adv. Microb. Physiol. 22 123–183PubMedCrossRefGoogle Scholar
  9. Gligic L, Vujovic N, Stevovic B and Manic J 2003 Optimal conditions for accumulation of bioavailable iron in Saccharomyce cerevisiae cells. Boll. Chim. Farm. 142 330–332PubMedGoogle Scholar
  10. Goel G, Chou IC and Voit EO 2006 Biological systems modelling and analysis: a biomolecular technique of the twenty-first century. J. Biomol. Tech. 17 252–269PubMedGoogle Scholar
  11. Jacquez JA 1996 Compartmental analysis in biology and medicine. (Ann Arbor: BioMedware) p. 514Google Scholar
  12. Klipp E, Nordlander B, Kruger R, Gennemark P and Hohmann S 2005 Integrative model of the response of yeast to osmotic shock. Nat. Biotechnol. 23 975–982PubMedCrossRefGoogle Scholar
  13. Knott G and Kerner D 2004 MLAB, a mathematical modeling laboratory (Bethesda: Civilized Software Inc)Google Scholar
  14. Martini S, Ricci M, Bonechi C, Trabalzini L, Santucci A and Rossi C 2004 In vivo 13C-NMR and modelling study of metabolic yield response to ethanol stress in a wild-type strain of Saccharomyces cerevisiae. FEBS Lett. 56 63–68CrossRefGoogle Scholar
  15. Martini S, Ricci M, Bartolini F, Bonechi C, Millucci L, Braconi D, Santucci A and Rossi C 2005 Metabolic response to exogenous ethanol in yeast: An in vivo NMR and mathematical modelling approach. Biophys. Chem. 120 135–142PubMedCrossRefGoogle Scholar
  16. Monod J 1949 The growth of bacterial cultures. Annu. Rev. Microbiol. 3 371–394CrossRefGoogle Scholar
  17. Peiter E, Fischer M, Sidaway K, Roberts SK and Sanders D 2005a Multiple RNA surveillance pathways limit aberrant expression of iron uptake mRNAs and prevent Iron toxicity in S. cerevisiae. Mol. Cell 19 39–51CrossRefGoogle Scholar
  18. Peiter E, Fischer M, Sidaway K, Roberts SK and Sanders D 2005b The Saccharomyces cerevisiae Ca2+ channel Cch1pMid1p is essential for tolerance to cold stress and iron toxicity. FEBS Lett. 579 5697–5703PubMedGoogle Scholar
  19. Puig S, Askeland E and Thiele DJ 2005 Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 120 99–110PubMedCrossRefGoogle Scholar
  20. Ricci M, Martini S, Bonechi C, Trabalzini L, Santucci A and Rossi C 2004 Inhibition effects of ethanol on the kinetics of glucose metabolism by S. cerevisiae: NMR and modelling study. Chem. Phys. Lett. 387 377–382CrossRefGoogle Scholar
  21. Shulman RG, Brown TR, Ugurbil K, Ogawa S, Cohen SM and den Hollander JA 1979 Cellular applications of 31P and 13C nuclear magnetic resonance. Science 205 160–166PubMedCrossRefGoogle Scholar
  22. Shulman RG 1983 NMR spectroscopy of living cells. Sci. Am. 248 86–93PubMedCrossRefGoogle Scholar
  23. Trabalzini L, Paffetti A, Scaloni A,. Talamo F, Ferro E, Coratza G, Bovalini L, Lusini P, Martelli P and Santucci A 2003 Proteomic response to physiological fermentation stresses in a wild-type wine strain of Saccharomyces cerevisiae. Biochem. J. 370 35–46PubMedCrossRefGoogle Scholar
  24. Warwick T, Kutalik Z and Moulton V 2007 Estimating parameters for generalized mass action models using constrains propagation. Math. Biosci. 208 607–620CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2011

Authors and Affiliations

  • Maso Ricci
    • 1
    • 2
  • Silvia Martini
    • 1
    • 2
  • Claudia Bonechi
    • 1
    • 2
  • Daniela Braconi
    • 3
  • Annalisa Santucci
    • 3
  • Claudio Rossi
    • 1
    • 2
  1. 1.Department of Pharmaceutical and Applied ChemistryUniversity of SienaSienaItaly
  2. 2.Center for Colloid and Surface Science (CSGI)Sesto FiorentinoItaly
  3. 3.Department of Molecular BiologyUniversità di SienaSienaItaly

Personalised recommendations