Nuclear reprogramming and epigenetic rejuvenation

This is a preview of subscription content, access via your institution.

References

  1. Aziz A, Soucie E, Sarrazin S and Sieweke M H 2009 MafB/c-Maf deficiency enables self-renewal of differentiated functional macrophages; Science 326 867–871

    CAS  Article  PubMed  Google Scholar 

  2. Buttitta L A, Katzaroff A J, Perez C L, de la Cruz A and Edgar B A 2007 A double-assurance mechanism controls cell cycle exit upon terminal differentiation in Drosophila; Dev. Cell 12 631–643

    CAS  Article  PubMed  Google Scholar 

  3. Buttitta L A and Edgar B A 2007 Mechanisms controlling cell cycle exit upon terminal differentiation; Curr. Opin. Cell Biol. 19 697–704

    CAS  Article  PubMed  Google Scholar 

  4. Chan E M, Ratanasirintrawoot S, Park I H, Manos P D, Loh Y H, Huo H, Miller J D, Hartung O, et al. 2009 Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells; Nat. Biotechnol. 27 1033–1037

    CAS  Article  PubMed  Google Scholar 

  5. Cibelli J 2009 The human egg is back; Cell Stem Cell 5 345–346

    CAS  Article  PubMed  Google Scholar 

  6. Fanti L and Pimpinelli S 2008 HP1: a functionally multifaceted protein; Curr. Opin. Genet. Dev. 18 169–174

    CAS  Article  PubMed  Google Scholar 

  7. Feldman N, Gerson A, Fang J, Li E, Zhang Y, Shinkai Y, Cedar H and Bergman Y 2006 G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis; Nat. Cell Biol. 8 188–194

    CAS  Article  PubMed  Google Scholar 

  8. Hanna J, Markoulaki S, Mitalipova M, Cheng A W, Cassady J P, Staerk J, Carey B W, Lengner C J, et al. 2009 Metastable pluripotent states in NOD-mouse-derived ESCs; Cell Stem Cell 4 513–524

    CAS  Article  PubMed  Google Scholar 

  9. Hanna J, Saha K, Pando B, van Zon J, Lengner C J, Creyghton M P, van Oudenaarden A and Jaenisch R 2009 Direct cell reprogramming is a stochastic process amenable to acceleration; Nature (London) 462 595–601

    CAS  Article  Google Scholar 

  10. Gurdon J B and Byrne J A 2003 The first half-century of nuclear transplantation; Proc. Natl. Acad. Sci. USA 100 8048–8052

    CAS  Article  PubMed  Google Scholar 

  11. Hochedlinger K and Jaenisch R 2002 Monoclonal mice generated by nuclear transfer from mature B and T donor cells; Nature (London) 415 1035–1038

    CAS  Article  Google Scholar 

  12. Klappacher G W, Lunyak V V, Sykes D B, Sawka-Verhelle D, Sage J, Brard G, Ngo S D, Gangadharan D, et al. 2002 An induced Ets repressor complex regulates growth arrest during terminal macrophage differentiation; Cell 109 169–180

    CAS  Article  PubMed  Google Scholar 

  13. Liu L, Bailey S M, Okuka M, Muñoz P, Li C, Zhou L, Wu C, Czerwiec E, et al. 2009 Telomere lengthening early in development; Nat. Cell Biol. 9 1436–1441

    Article  Google Scholar 

  14. Marion R M, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, Serrano M and Blasco M A 2009 Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells; Cell Stem Cell 4 141–154

    CAS  Article  PubMed  Google Scholar 

  15. Mizutani E, Ono T, Li C, Maki-Suetsugu R and Wakayama T 2008 Propagation of senescent mice using nuclear transfer embryonic stem cell lines; Genesis. 46 478–83

    Article  PubMed  Google Scholar 

  16. Narita M, Nũnez S, Heard E, Narita M, Lin A W, Hearn S A, Spector D L, Hannon G J, et al. 2003 Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence; Cell 113 703–716

    CAS  Article  PubMed  Google Scholar 

  17. Nielsen S J, Schneider R, Bauer U M, Bannister A J, Morrison A, O’Carroll D, Firestein R, Cleary M, et al. 2001 Rb targets histone H3 methylation and HP1 to promoters; Nature (London) 412 561–565

    CAS  Article  Google Scholar 

  18. Panteleeva I, Boutillier S, See V, Spiller D G, Rouaux C, Almouzni G, Bailly D, Maison C, et al. 2007 HP1alpha guides neuronal fate by timing E2F-targeted genes silencing during terminal differentiation; EMBO J. 26 3616–3628

    CAS  Article  PubMed  Google Scholar 

  19. Singh P B 2000 Understanding nuclear reprogramming (Edinburgh: Roslin Institute year book. Roslin Institute press) pp 53–58

    Google Scholar 

  20. Surani M A and McLaren A 2006 Stem cells: a new route to rejuvenation; Nature (London) 443 284–285

    CAS  Article  Google Scholar 

  21. Tachibana M, Sparman M, Sritanaudomchai H, Ma H, Clepper L, Woodward J, Li Y, Ramsey C, et al. 2009 Mitochondrial gene replacement in primate offspring and embryonic stem cells; Nature (London) 461 367–372

    CAS  Article  Google Scholar 

  22. Takahashi K and Yamanaka S 2006 Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors; Cell 126 663–676

    CAS  Article  PubMed  Google Scholar 

  23. Taylor D A 2009 From stem cells and cadaveric matrix to engineered organs; Curr. Opin. Biotechnol. 20 598–605

    CAS  Article  PubMed  Google Scholar 

  24. Wilmut I, Schnieke A E, McWhir J, Kind A J and Campbell K H 1997 Viable offspring derived from fetal and adult mammalian cells; Nature (London) 385 810–813

    CAS  Article  Google Scholar 

  25. Zhang R and Adams P D 2007 Heterochromatin and its relationship to cell senescence and cancer therapy; Cell Cycle 6 784–789

    CAS  Article  PubMed  Google Scholar 

  26. Zhang R, Chen W and Adams P D 2007 Molecular dissection of formation of senescence-associated heterochromatin foci; Mol. Cell Biol. 27 2343–2358

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prim B. Singh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Singh, P.B., Zacouto, F. Nuclear reprogramming and epigenetic rejuvenation. J Biosci 35, 315–319 (2010). https://doi.org/10.1007/s12038-010-0034-2

Download citation

Keywords

  • Epigenetics
  • iPS cells
  • rejuvenation
  • reprogramming
  • SCNT