Skip to main content

A weak link in metabolism: the metabolic capacity for glycine biosynthesis does not satisfy the need for collagen synthesis

Abstract

In a previous paper, we pointed out that the capability to synthesize glycine from serine is constrained by the stoichiometry of the glycine hydroxymethyltransferase reaction, which limits the amount of glycine produced to be no more than equimolar with the amount of C 1 units produced. This constraint predicts a shortage of available glycine if there are no adequate compensating processes. Here, we test this prediction by comparing all reported fluxes for the production and consumption of glycine in a human adult. Detailed assessment of all possible sources of glycine shows that synthesis from serine accounts for more than 85% of the total, and that the amount of glycine available from synthesis, about 3 g/day, together with that available from the diet, in the range 1.5–3.0 g/day, may fall significantly short of the amount needed for all metabolic uses, including collagen synthesis by about 10 g per day for a 70 kg human. This result supports earlier suggestions in the literature that glycine is a semi-essential amino acid and that it should be taken as a nutritional supplement to guarantee a healthy metabolism.

This is a preview of subscription content, access via your institution.

References

  • Ackernecht E H 1953 Paleopathology, in Anthropology today: an encyclopedic inventory (ed.) A L Kroeber (Chicago, IL: University of Chicago Press)

    Google Scholar 

  • Aouacheria A, Geourjon C, Aghajari N, Navratil V, Deléage G, Lethias C and Exposito J-Y 2006 Insights into early extracellular matrix evolution: spongin short chain collagen-related proteins are homologous to basement membrane type IV collagens and form a novel family widely distributed in invertebrates; Mol. Biol. Evol. 23 2288–2302

    CAS  PubMed  Google Scholar 

  • Atencia L J, McDevitt C A, Nile W B and Sokoloff L 1989 Cartilage content of an immature dog; Connect. Tissue Res. 18 235–242

    CAS  PubMed  Google Scholar 

  • Babraj J A, Smith K, Cuthbertson D J, Rickhuss P, Dorling J S and Rennie M J 2005 Human bone collagen synthesis is a rapid nutritionally modulated process; J. Bone Miner. Res. 20 930–937

    CAS  PubMed  Google Scholar 

  • Baker P R S, Cramer S D, Kennedy M, Assimos D G and Holmes R P 2004 Glycolate and glyoxylate metabolism in HepG2 cells; Am. J. Physiol. 287 C1359–C1365

    CAS  Google Scholar 

  • Baños G, Daniel P M, Moorhouse S R and Pratt O E 1975 The requirements of the brain for some amino acids; J. Physiol. 246 539–548

    PubMed  Google Scholar 

  • Baserga R 1976 Multiplication and division in mammalian cells (New York: Marcel Dekker Inc.)

    Google Scholar 

  • Behnam J T, Williams E L, Brink S, Rumsby G and Danpure C J 2006 Reconstruction of human hepatocyte glyoxylate metabolic pathways in stably transformed Chinese-hamster ovary cells; Biochem. J. 394 409–416

    CAS  PubMed  Google Scholar 

  • Berg R A, Schwartz M L and Crystal R G 1980 Regulation of the production of secretory proteins: intracellular degradation of newly synthesized ‘defective’ collagen; Proc. Natl. Acad. Sci. USA 77 4746–4750

    CAS  PubMed  Google Scholar 

  • Bhide V M, Laschinger C A, Arora P D, Lee W, Hakkinen L, Larjava H, Sodek J and McCulloch C A 2005 Collagen phagocytosis by fibroblasts is regulated by decorin; J. Biol. Chem. 280 23103–23113

    CAS  PubMed  Google Scholar 

  • Bienkowski R S 1983 Intracellular degradation of newly synthesized secretory proteins; Biochem. J. 214 1–10

    CAS  PubMed  Google Scholar 

  • Bienkowski R S and Engels C J 1981 Measurement of intracellular collagen degradation; Anal. Biochem. 116 414–424

    CAS  PubMed  Google Scholar 

  • Bienkowski R S, Baum B J and Crystal R G 1978a Fibroblasts degrade newly synthesised collagen within the cell before secretion; Nature (London) 276 413–416

    CAS  Google Scholar 

  • Bienkowski R S, Cowan M J, McDonald J A and Crystal R G 1978b Degradation of newly synthesized collagen; J. Biol. Chem. 253 4356–4363

    CAS  PubMed  Google Scholar 

  • Blair H C, Zaidi M and Schlesinger P H 2002 Mechanisms balancing skeletal matrix synthesis and degradation; Biochem. J. 364 329–341

    CAS  PubMed  Google Scholar 

  • Block R J and Weiss K W 1956 Amino acid handbook. Methods and results of protein analysis (Springfield Ill: Charles C Thomas)

    Google Scholar 

  • Boudier C, Holle C and Bieth J G 1981 Stimulation of the elastolytic activity of leukocyte elastase by leukocyte cathepsin G; J. Biol. Chem. 256 10256–10258

    CAS  PubMed  Google Scholar 

  • Bowering J, Calloway D H, Margen S and Kaufmann N A 1970 Dietary protein level and uric acid metabolism in normal man; J. Nutr. 100 249–261

    CAS  PubMed  Google Scholar 

  • Bradley K, McConnell-Breul D and Crystal R G 1975 Collagen in the human lung. Quantitation of rates of synthesis and partial characterization of composition; J. Clin. Invest. 55 543–550

    CAS  PubMed  Google Scholar 

  • Brawley L, Torrens C, Anthony F W, Itoh S, Wheeler T, Jackson A A, Clough, G F, Poston, L and Hanson M A 2003 Glycine rectifies vascular dysfunction induced by dietary protein imbalance during pregnancy; J. Physiol. 554 497–504

    PubMed  Google Scholar 

  • Case G L and Benevenga N J 1977 Significance of formate as an intermediate in the oxidation of the methionine S-methyl-L-cysteine and sarcosine methyl carbons to CO2 in the rat; J. Nutr. 107 1665–1676

    CAS  PubMed  Google Scholar 

  • Christensen H N 1982 Interorgan amino acid nutrition; Physiol. Rev. 62 1193–1233

    CAS  PubMed  Google Scholar 

  • Cook R J and Wagner C 1984 Glycine N-methyltransferase is a folate binding protein of rat liver cytosol; Proc. Natl. Acad. Sci. USA 81 3631–3634

    CAS  PubMed  Google Scholar 

  • Cornish-Bowden A, Hofmeyr J-H S and Cárdenas M L 1995 Strategies for manipulating metabolic fluxes in biotechnology; Bioorg. Chem. 23, 439–449

    CAS  Google Scholar 

  • Crawhall J C and Watts R W 1962 The metabolism of glyoxylate by human- and rat-liver mitochondria; Biochem. J. 85 163–171

    CAS  PubMed  Google Scholar 

  • Daughaday W H and Mariz I K 1962 The formation of free hydroxyproline by rat cartilage in vitro; J. Biol. Chem. 237 2831–2835

    CAS  PubMed  Google Scholar 

  • Davis S R, Stacpoole P W, Williamson J, Kick L S, Quinlivan E P, Coats B S, Shane B, Bailey L B and Gregory J F 3rd 2004 Tracer-derived total and folate-dependent homocysteine remethylation and synthesis rates in humans indicate that serine is the main one-carbon donor; Am. J. Physiol. 286 E272–E279

    CAS  Google Scholar 

  • Davson 1976 The blood-brain barrier; J. Physiol. 255 1–28

    CAS  PubMed  Google Scholar 

  • de Koning T J, Duran M, Dorland L, Gooskens R, Van Schaftingen E, Jaeken J, Blau N, Berger R and Poll-The B T 1998 Beneficial effects of l-serine and glycine in the management of seizures in 3-phosphoglycerate dehydrogenase deficiency; Ann. Neurol. 44 261–265

    PubMed  Google Scholar 

  • Duggleby S L and Waterlow J C 2005 The end-product method of measuring whole-body protein turnover: a review of published results and a comparison with those obtained by leucine infusion; Br. J. Nutr. 94 141–153

    CAS  PubMed  Google Scholar 

  • el-Harake W A, Furman M A, Cook B, Nair K S, Kukowski J and Brodsky I G 1998 Measurement of dermal collagen synthesis rate in vivo in humans; Am. J. Physiol. 274 E586–E591

    CAS  PubMed  Google Scholar 

  • Eyre D R, Weis M A and Wu J J 2006 Articular cartilage collagen: an irreplaceable framework? Eur. Cell. Mater. 12 57–63

    CAS  PubMed  Google Scholar 

  • FAO/WHO/UNU 1985 Energy and protein requirements; FAO/ WHO/UNU Tech. Rep. Ser. 724 1–206

    Google Scholar 

  • Fell D 1997 Understanding the control of metabolism (London: Portland Press)

    Google Scholar 

  • Fern E B and Garlick P J 1973 The specific radioactivity of the precursor pool for estimates of the rate of protein synthesis; Biochem. J. 134 1127–1130

    CAS  PubMed  Google Scholar 

  • Fern E B, Garlick P J and Waterlow J C 1985 Apparent compartmentation of body nitrogen in one human subject: its consequences in measuring the rate of whole-body protein synthesis with 15N; Clin. Sci. (London) 68 271–282

    CAS  Google Scholar 

  • Finkelstein J S 2004 Osteoporosis; in Cecil textbook of medicine (Philadelphia: Saunders) pp 147–155

    Google Scholar 

  • Flanagan B and Nichols G 1969 Bone matrix turnover and balance in vitro II, the effects of ageing; J. Clin. Invest. 48 607–612

    CAS  PubMed  Google Scholar 

  • Fukagawa N K, Ajami A M and Young V R 1996 Plasma methionine and cysteine kinetics in response to an intravenous glutathione infusion in adult humans; Am. J. Physiol. 270 E209–E214

    CAS  PubMed  Google Scholar 

  • Gibson N R, Jahoor F, Ware L and Jackson A A 2002 Endogenous glycine and tyrosine production is maintained in adults consuming a marginal-protein diet; Am. J. Clin. Nutr. 75 511–518

    CAS  PubMed  Google Scholar 

  • Hance A J, Bradley K and Crystal R G 1976 Lung collagen heterogeneity. Synthesis of type I and type III collagen by rabbit and human lung cells in culture; J. Clin. Invest. 57 102–111

    CAS  PubMed  Google Scholar 

  • Hofmeyr J-H S and Cornish-Bowden A 2000 Regulating the cellular economy of supply and demand; FEBS Lett. 476 47–51

    CAS  PubMed  Google Scholar 

  • House J D, Hall B N and Brosnan J T 2001 Threonine metabolism in isolated rat hepatocytes; Am. J. Physiol. 281 E1300–E1307

    CAS  Google Scholar 

  • Huang W 1977 Chemical and histochemical studies of human alveolar collagen fibers; Am. J. Pathol. 86 81–97

    CAS  PubMed  Google Scholar 

  • Inoue K, Mikuni-Takagaki Y, Oikawa K, Itoh T, Inada M, Noguchi T, Park J S, Onodera T, Krane S M, Noda M and Itohara S 2006 A crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism; J. Biol. Chem. 281 33814–33824

    CAS  PubMed  Google Scholar 

  • Jackson A A 1991 The glycine story; Eur. J. Clin. Nutr. 45 59–65

    CAS  PubMed  Google Scholar 

  • Jackson A A, Badaloo A V, Forrester T, Hibbert J M and Persaud C 1987 Urinary excretion of 5-oxoproline (pyroglutamic aciduria) as an index of glycine insufficiency in normal man; Br. J Nutr. 58 207–214

    CAS  PubMed  Google Scholar 

  • Jackson A A, Persaud C, Meakins T S and Bundy R 1996 Urinary excretion of 5-L-oxoproline (pyroglutamic acid) is increased in normal adults consuming vegetarian or low protein diets; J. Nutr. 126 2813–2822

    CAS  PubMed  Google Scholar 

  • Jackson A A, Dunn R L, Marchand MC and Langley-Evans S C 2002 Increased systolic blood pressure in rats induced by a maternal low-protein diet is reversed by dietary supplementation with glycine; Clin. Sci. (London). 103 633–639

    CAS  Google Scholar 

  • Johnson H A, Baldwin R L, France J and Calvert C C 1999 A model of whole-body protein turnover based on leucine kinetics in rodents; J. Nutr. 129 728–739

    CAS  PubMed  Google Scholar 

  • Kadler K E, Holmes D F, Trotter J A and Chapman J A 1996 Collagen fibril formation; Biochem. J. 316 1–11

    CAS  PubMed  Google Scholar 

  • Keeley F W and Johnson D J 1983 Measurement of the absolute synthesis of soluble and insoluble elastin by chick aortic tissue; Can. J. Biochem. Cell. Biol. 61 1079–1084

    CAS  PubMed  Google Scholar 

  • Kleiber M 1947 Body size and metabolic rate; Physiol. Rev. 27 511–541

    CAS  Google Scholar 

  • Kopple J D and Swendseid M E 1975 Evidence that histidine is an essential amino acid in normal and chronically uremic man; J. Clin. Invest. 55 881–891

    CAS  PubMed  Google Scholar 

  • Krane S M, Byrne M H, Lemaitre V, Henriet P, Jeffrey J J, Witter J P, Liu X, Wu H, Jaenisch R and Eeckhout Y 1996 Different collagenase gene products have different roles in degradation of type I collagen; J. Biol. Chem. 271 28509–28515

    CAS  PubMed  Google Scholar 

  • Krebs H A, Hems R and Tyler B 1976 The regulation of folate and methionine metabolism; Biochem. J. 158 341–353

    CAS  PubMed  Google Scholar 

  • Laurent G J 1982 Rates of collagen synthesis in lung skin and muscle obtained in vivo by a simplified method using [3H]proline; Biochem. J. 206 535–544

    CAS  PubMed  Google Scholar 

  • Lewis R M, Godfrey K M, Jackson A A, Cameron I T and Hanson M A 2005 Low serine hydroxy-methyltransferase activity in the human placenta has important implications for fetal glycine supply; J. Clin. Endocrinol. Metab. 90 1594–1598

    CAS  PubMed  Google Scholar 

  • Li C W, Chen J Y and Hua T E 1998 Precambrian sponges with cellular structures; Science 279 879–882

    CAS  PubMed  Google Scholar 

  • Li X, Bradford B U, Wheeler M D, Stimpson S A, Pink, H M, Brodie T A, Schwab J H and Thurman R G 2001 Dietary glycine prevents peptidoglycan polysaccharide-induced reactive arthritis in the rat: role for glycine-gated chloride channel; Infect. Immun. 69 5883–5891

    CAS  PubMed  Google Scholar 

  • Lohmander L S, Yoshihara Y, Roos H, Kobayashi T, Yamada H and Shinmei M 1996 Procollagen II C-propeptide in joint fluid: changes in concentration with age, time after knee injury, and osteoarthritis; J. Rheumatol. 23 1765–1769

    CAS  PubMed  Google Scholar 

  • Lohmander L S, Atley L M, Pietka T A and Eyre D R 2003 The release of crosslinked peptides from type II collagen into human synovial fluid is increased soon after joint injury and in osteoarthritis; Arthr. Rheum. 48 3130–3139

    CAS  Google Scholar 

  • London I M, West R, Shemin D and Rittenberg D 1950 On the origin of bile pigment in normal man; J. Biol. Chem. 184 351–358

    CAS  PubMed  Google Scholar 

  • Lowry O H, Gilligan D R and Katersky E M 1941 The determination of collagen and elastin in tissues with results obtained in various normal tissues from different species; J. Biol. Chem. 139 795–804

    CAS  Google Scholar 

  • Lucattelli M, Cavarra E, de Santi M M, Tetley T D, Martorana P A and Lungarella G 2003 Collagen phagocytosis by lung alveolar macrophages in animal models of emphysema; Eur. Respir. J. 22 728–734

    CAS  PubMed  Google Scholar 

  • Lumb M, Chanarin I, Deacon R and Perry J 1988 In vivo oxidation of the methyl group of hepatic 5-methyltetrahydrofolate; J. Clin. Pathol. 41 1158–1162

    CAS  PubMed  Google Scholar 

  • Lumb M, Bottiglieri T, Deacon R, Perry J and Chanarin I 1989a Regulation of 5-methyltetrahydrofolate synthesis; Biochem. J. 258 611–612

    CAS  PubMed  Google Scholar 

  • Lumb M, Deacon R, Perry J and Chanarin I 1989b Oxidation of 5-methyltetrahydrofolate in cobalamin-inactivated rats; Biochem. J. 258 907–910

    CAS  PubMed  Google Scholar 

  • Mahan B R 1978 Osteoarthrosis in a coyote × dog hybrid from Nebraska; J. Wildl. Dis. 14 395–398

    CAS  PubMed  Google Scholar 

  • Martini W Z, Chinkes D L and Wolfe R R 2004 The intracellular free amino acid pool represents tracer precursor enrichment for calculation of protein synthesis in cultured fibroblasts and myocytes; J. Nutr. 134 1546–1550

    CAS  PubMed  Google Scholar 

  • Mays P K, McAnulty R J, Campa J S and Laurent G J 1991 Age-related changes in collagen synthesis and degradation in rat tissues. Importance of degradation of newly synthesized collagen in regulating collagen production; Biochem. J. 276 307–313

    CAS  PubMed  Google Scholar 

  • McMartin K E, Martin-Amat G, Makar A B and Tephly T R 1977 Methanol poisoning. V. Role of formate metabolism in the monkey; J. Pharmacol. Exp. Theor. 201 564–572

    CAS  Google Scholar 

  • Meléndez-Hevia E and de Paz-Lugo P 2008 Branch-point stoichiometry can generate weak links in metabolism: the case of glycine biosynthesis; J. Biosci. 33 771–780

    PubMed  Google Scholar 

  • Meisenberg G and Simmons W H 1998 Principles of medical biochemistry (St Louis, MO: Mosby)

    Google Scholar 

  • Meister A 1988 Glutathione metabolism and its selective modification; J. Biol. Chem. 263 17205–17208

    CAS  PubMed  Google Scholar 

  • Miller B F, Olesen J L, Hansen M, Dossing S, Crameri R M, Welling R J, Langberg H, Flyvbjerg A, Kjaer M, Babraj J A, Smith K and Rennie M J 2005 Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise; J. Physiol. 567 1021–1033

    CAS  PubMed  Google Scholar 

  • Mizuno K, Hayashi T and Bachinger H P 2003 Hydroxylation-induced stabilization of the collagen triple helix. Further characterization of peptides with 4(R)-hydroxyproline in the Xaa position; J. Biol. Chem. 278 32373–32379

    CAS  PubMed  Google Scholar 

  • Mudd S H and Poole J R 1975 Labile methyl balances for normal humans on various dietary regimens; Metabolism 24 721–735

    CAS  PubMed  Google Scholar 

  • Mudd S H, Ebert M H and Scriver C R 1980 Labile methyl group balances in the human: the role of sarcosine; Metabolism 29 707–720

    CAS  PubMed  Google Scholar 

  • Mudd S H, Cerone R, Schiaffino M C, Fantasia A R, Minniti G, Caruso U, Lorini R, Watkins D, et al. 2001 Glycine N-methyltransferase deficiency: a novel inborn error causing persistent isolated hypermethioninaemia; J. Inherit. Metab. Dis. 24 448–464

    CAS  PubMed  Google Scholar 

  • Mudd S H, Brosnan J T, Brosnan M E, Jacobs R L, Stabler S P, Allen R H, Vance D E and Wagner C 2007 Methyl balance and transmethylation fluxes in humans; Am. J. Clin. Nutr. 85 19–25

    CAS  PubMed  Google Scholar 

  • N’Diaye F, Hitier Y, Courcy G P d, Goubern M and Bourdel G 1980 Methionine synthesis aminoimidazole carboxamide excretion and folate levels in pregnant rats; J. Nutr. 110 522–531

    PubMed  Google Scholar 

  • Neuman R E and Logan M A 1950 The determination of collagen and elastin in tissues; J. Biol. Chem. 186 549–556

    CAS  PubMed  Google Scholar 

  • Nissim I and Lapidot A 1979 Plasma amino acid turnover rates and pools in rabbits: in vivo studies using stable isotopes; Am. J. Physiol. 237 E418–E427

    CAS  PubMed  Google Scholar 

  • Nissim I, Yudkoff M and Segal S 1983 A model for determination of total body protein synthesis based upon compartmental analysis of the plasma [15N] glycine decay curve; Metabolism 32 646–653

    CAS  PubMed  Google Scholar 

  • Norton J A, Stein T P and Brennan M F 1981 Whole body protein synthesis and turnover in normal man and malnourished patients with and without known cancer; Ann. Surg. 194 123–128

    CAS  PubMed  Google Scholar 

  • Palmer R M, Robins S P and Lobley G E 1980 Measurement of the synthesis rates of collagens and total protein in rabbit muscle; Biochem. J. 192 631–636

    CAS  PubMed  Google Scholar 

  • Parimi P S, Gruca L L and Kalhan S C 2005 Metabolism of threonine in newborn infants; Am. J. Physiol. 289 E981–E985

    CAS  Google Scholar 

  • Passeri G, Pini G, Troiano L, Vescovini R, Sansoni P, Passeri M, Gueresi P, Delsignore R, Pedrazzoni M and Franceschi C 2003 Low vitamin D status, high bone turnover, and bone fractures in centenarians; J. Clin. Endocrinol. Metab. 88 5109–5115

    CAS  PubMed  Google Scholar 

  • Perret S, Merle C, Bernocco S, Berland P, Garrone R, Hulmes D J, Theisen M and Ruggiero F 2001 Unhydroxylated triple helical collagen I produced in transgenic plants provides new clues on the role of hydroxyproline in collagen folding and fibril formation; J. Biol. Chem. 276 43693–43698

    CAS  PubMed  Google Scholar 

  • Persaud C, Forrester T and Jackson A A 1996 Urinary excretion of 5-l-oxoproline (pyroglutamic acid) is increased during recovery from severe childhood malnutrition and responds to supplemental glycine; J. Nutr. 126 2823–2830

    CAS  PubMed  Google Scholar 

  • Pierce J A and Hocott J B 1960 Studies on the collagen and elastin content of the human lung; J. Clin. Invest. 39 8–14

    CAS  PubMed  Google Scholar 

  • Rebouche C J and Engel A G 1984 Kinetic compartmental analysis of carnitine metabolism in the human carnitine deficiency syndromes. Evidence for alterations in tissue carnitine transport; J. Clin. Invest. 73 857–867

    CAS  PubMed  Google Scholar 

  • Rebouche C J and Seim H 1998 Carnitine metabolism and its regulation in microorganisms and mammals; Annu. Rev. Nutr. 18 39–61

    CAS  PubMed  Google Scholar 

  • Rebouche C J, Lombard K A and Chenard C A 1993 Renal adaptation to dietary carnitine in humans; Am. J. Clin. Nutr. 58 660–665

    CAS  PubMed  Google Scholar 

  • Repo R U and Mitchell N 1971 Collagen synthesis in mature articular cartilage of the rabbit; J. Bone Joint Surg. 53 541–548

    CAS  Google Scholar 

  • Reynolds W W and Karlotski W J 1977 The allometric relationship of skeleton weight to body weight in teleost fishes: a preliminary comparison with birds and mammals; Copeia 1977 160–163

    Google Scholar 

  • Rogers H J, Weidmann S M and Parkinson A 1952 Studies on the skeletal tissues. II. The collagen content of bones from rabbits oxen and humans; Biochem. J. 50 537–542

    CAS  PubMed  Google Scholar 

  • Rosenbloom J, Abrams W R and Mecham R 1993 Extracellular matrix 4: the elastic fiber; FASEB. J. 7 1208–1218

    CAS  PubMed  Google Scholar 

  • Rucker R B and Dubick M A 1984 Elastin metabolism and chemistry: potential roles in lung development and structure; Environ. Health Perspect. 55 179–191

    CAS  PubMed  Google Scholar 

  • Ruiz-Torres A and Kürten I 1976 Is there a recycling of hydroxyproline?; Experientia 32 555–656

    CAS  PubMed  Google Scholar 

  • Salido E C, Li X M, Lu Y, Wang X, Santana A, Roy-Chowdhury N, Torres A, Shapiro L J and Roy-Chowdhury J 2006 Alanineglyoxylate aminotransferase-deficient mice a model for primary hyperoxaluria that responds to adenoviral gene transfer; Proc. Natl. Acad. Sci. USA 103 18249–18254

    CAS  PubMed  Google Scholar 

  • Shapiro S D, Endicott S K, Province M A, Pierce J A and Campbell E J 1991 Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of d-aspartate and nuclear weapons-related radiocarbon; J. Clin. Invest. 87 1828–1834

    CAS  PubMed  Google Scholar 

  • Schneir M L, Ramamurthy N S and Golub L M 1984 Extensive degradation of recently synthesized collagen in gingiva of normal and streptozotocin-induced diabetic rats; J. Dent. Res. 63 23–27

    CAS  PubMed  Google Scholar 

  • Stead L M, Brosnan J T, Brosnan M E, Vance D E and Jacobs R L 2006 Is it time to reevaluate methyl balance in humans?; Am. J. Clin. Nutr. 83 5–10

    CAS  PubMed  Google Scholar 

  • Stifel F B and Herman R H 1972 Is histidine an essential amino acid in man? Am. J. Clin. Nutr. 25 182–185

    CAS  PubMed  Google Scholar 

  • Taheri M R, Wickremasinghe R G and Hoffbrand A V 1981 Alternative metabolic fates of thymine nucleotides in human cells; Biochem. J. 194 451–461

    CAS  PubMed  Google Scholar 

  • Tobin D J 2006 Biochemistry of human skin — our brain on the outside; Chem. Soc. Rev. 35 52–67

    CAS  PubMed  Google Scholar 

  • Van Venrooij W J, Moonen H and Van Loon-Klaassen L 1974 Source of amino acids used for protein synthesis in HeLa cells; Eur. J. Biochem. 50 297–304

    PubMed  Google Scholar 

  • Vaz F M and Wanders R J 2002 Carnitine biosynthesis in mammals; Biochem. J. 361 417–429

    CAS  PubMed  Google Scholar 

  • Waterlow J C 1984 Protein turnover with special reference to man; Q. J. Exp. Physiol. 69 409–438

    CAS  PubMed  Google Scholar 

  • Waterlow J C 2006 Protein turnover (Wallingford, UK: CABI Publishing) pp 270–274

    Google Scholar 

  • Weissengruber G E, Fuss F K, Egger G, Stanek, G, Hittmair, K M and Forstenpointner G 2006 The elephant knee joint: morphological and biomechanical considerations; J. Anat. 208 59–72

    CAS  PubMed  Google Scholar 

  • Wise E M Jr and Elwyn D 1965 Rates of reactions involved in phosphatide synthesis in liver and small intestine of intact rats; J. Biol. Chem. 240 1537–1548

    CAS  PubMed  Google Scholar 

  • Woessner J F Jr 1991 Matrix metalloproteinases and their inhibitors in connective tissue remodelling; FASEB J. 5 2145–2154

    CAS  PubMed  Google Scholar 

  • Woessner J F and Brewer T H 1963 Formation and breakdown of collagen and elastin in the human uterus during pregnancy and post-partum involution; Biochem. J. 89 75–82

    CAS  PubMed  Google Scholar 

  • Yeung Y G 1986 l-Threonine aldolase is not a genuine enzyme in rat liver; Biochem. J. 237 187–190

    CAS  PubMed  Google Scholar 

  • Young V R and Pellett P L 1987 Protein intake and requirements with reference to diet and health; Am. J. Clin. Nutr. 45 1323–1343

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Meléndez-Hevia.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meléndez-Hevia, E., de Paz-Lugo, P., Cornish-Bowden, A. et al. A weak link in metabolism: the metabolic capacity for glycine biosynthesis does not satisfy the need for collagen synthesis. J Biosci 34, 853–872 (2009). https://doi.org/10.1007/s12038-009-0100-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-009-0100-9

Keywords

  • Collagen
  • collagen synthesis
  • collagen turnover
  • essential amino acid
  • glycine
  • glycine metabolism
  • osteoarthritis
  • osteoporosis