Skip to main content
Log in

Living with urea stress

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Intracellular organic osmolytes are present in certain organisms adapted to harsh environments. These osmolytes protect intracellular macromolecules against denaturing environmental stress. In contrast to the usually benign effects of most organic osmolytes, the waste product urea is a well-known perturbant of macromolecules. Although urea is a perturbing solute which inhibits enzyme activity and stability, it is employed by some species as a major osmolyte. The answer to this paradox was believed to be the discovery of protective osmolytes (methylamines). We review the current state of knowledge on the various ways of counteracting the harmful effects of urea in nature and the mechanisms for this. This review ends with the mechanistic idea that cellular salt (KCl/NaCl) plays a crucial role in counteracting the effects of urea, either by inducing required chaperones or methylamines, or by thermodynamic interactions with urea-destabilised proteins. We also propose future opportunities and challenges in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α-LA:

α-lactalbumin

DMSO:

dimethyl sulphoxide

GPC:

glycerophosphoryl choline

Hsp:

heat shock protein

MDCK:

Madine-Darby canine kidney

mIMCD:

murine inner medullar collecting duct

NMR:

nuclear magnetic resonance

PCD:

papillary collecting duct

PI:

papillary interstitial

RNase-A:

ribonuclease-A

TMAO:

trimethylamine N-oxide

References

  • Alfieri R R, Petronini P G, Bonelli M A, Desenzani S, Cavazzoni A, Borghetti A F and Wheeler K P 2004 Role of compatible osmolytes and heat shock protein 70 in the induction of tolerance to stresses in porcine endothelial cells; J. Physiol. 555 757–767

    Article  PubMed  CAS  Google Scholar 

  • Altringham J D, Yancey P H and Johnstone I A 1982 The effects of osmoregulatory solutes on tension generation by dogfish skinned muscle fibres; J. Exp. Biol. 96 443–445

    CAS  Google Scholar 

  • Anderson P M 1981 Purification and properties of the glutamine- and N-acetyl-L-glutamate-dependent carbamoyl phosphate synthetase from liver of Squalus acanthias; J. Biol. Chem. 256 12228–12238

    PubMed  CAS  Google Scholar 

  • Anderson P M 1990 Ketone body and phosphoenol pyruvate formation by isolated hepatic mitochondria from Squalus acanthias (spiny dogfish); Expt. Zool. 254 144–154

    Article  CAS  Google Scholar 

  • Anjum F Rishi V and Ahmad F 2000 Compatibility of osmolytes with Gibbs energy of stabilization of proteins; Biochim. Biophys. Acta 1476 75–84

    PubMed  CAS  Google Scholar 

  • Arakawa T and Timasheff S N 1982 Preferential interactions of proteins with salts in concentrated solutions; Biochemistry 21 6545–6552

    Article  PubMed  CAS  Google Scholar 

  • Arakawa T and Timasheff S N 1985 The stabilization of proteins by osmolytes; Biophys. J. 47 411–414

    Article  PubMed  CAS  Google Scholar 

  • Bagnasco S, Balaban R, Fales H M, Yang Y M and Burg M 1986 Predominant osmotically active organic solutes in rat and rabbit renal medullas; J. Biol. Chem. 261 5872–5877

    PubMed  CAS  Google Scholar 

  • Ballantyne J S 1997 Role of phosphate in initial iron deposition in apoferritin; Comp. Biochem. Physiol. 118B 667–673

    Google Scholar 

  • Ballantyne J S and Moon T W 1986 The effects of urea, trimethylamine oxide and ionic strength on the oxidation of acyl carnitines by mitochondria isolated from the liver of the little skate (Raja erinacea); J. Comp. Physiol. 156B 845

    Google Scholar 

  • Barton K N, Buhr M M and Ballantyne J S 1999 Effects of urea and trimethylamine N-oxide on fluidity of liposomes and membranes of an elasmobranch; Am. J. Physiol. Regul. Integr. Comp. Physiol. 276 397–406

    Google Scholar 

  • Baskakov I, Wang A and Bolen D W 1998 Trimethylamine-N-oxide counteracts urea effects on rabbit muscle lactate dehydrogenase function: a test of the counteraction hypothesis; Biophys. J. 74 2666–2673

    Article  PubMed  CAS  Google Scholar 

  • Bateman J B, Evans G F, Brown P R, Gabriel C and Grant E H 1992 Dielectric properties of the system bovine albumin: urea: betaine in aqueous solution; Phys. Med. Biol. 37 175–182

    Article  PubMed  CAS  Google Scholar 

  • Beck F, Dorge A, Rick R and Thurau K 1984 Intra- and extracellular element concentration of rat renal papilla in antidiuresis; Kidney Int. 25 397–403

    Article  PubMed  CAS  Google Scholar 

  • Beere H M, Wolf B B, Cain K, Mosser D D, Mahboubi A, Kuwana T, Tailor P, Morimoto R I, Cohen G M and Green D R 2000 Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome; Nat. Cell. Biol. 2 469–475

    Article  PubMed  CAS  Google Scholar 

  • Bennion B J and Daggett V 2003 The molecular basis for the chemical denaturation of proteins by urea; Proc. Natl. Acad. Sci. USA 100 5142–5147

    Article  PubMed  CAS  Google Scholar 

  • Bento C S, Alejandro C H M J, Jane Z and Steven R G 1998 Characterization of the Hsp110/SSE gene family response to hyperosmolality and other stresses; Am. J. Physiol. Renal Physiol. 174 F1054–F1061

    Google Scholar 

  • Bolen D W 2004 Effects of naturally occurring osmolytes on protein stability and solubility: issues important in protein crystallization; Methods 34 312–322

    Article  PubMed  CAS  Google Scholar 

  • Bolen D W and Fisher J R 1969 Kinetic properties of adenosine deaminase in mixed aqueous solvents; Biochemistry 8 4239–4246

    Article  PubMed  CAS  Google Scholar 

  • Borowitzka L J and Brown A D 1974 The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella. The role of glycerol as a compatible solute; Arch. Microbiol. 96 3752

    Article  Google Scholar 

  • Bowlus R D and Somero G N 1979 Solute compatibility with enzyme function and structure: rationales for the selection of osmotic agents and end-products of anaerobic metabolism in marine invertebrates; J. Exp. Zool. 208 137–151

    Article  PubMed  CAS  Google Scholar 

  • Bulger R E, Beeuwkes R and Saubermann A J 1981 Application of scanning electron microscopy to x-ray analysis of frozen-hydrated sections. III. Elemental content of cells in the rat renal papillary tip; J. Cell Biol. 88 274–280

    Article  PubMed  CAS  Google Scholar 

  • Burg M B 1995 Molecular basis of osmotic regulation; Am. J. Physiol. 268 F983–F996

    PubMed  CAS  Google Scholar 

  • Burg M B, Kwon E D and Peters E M 1996 Glycerophosphocholine and betaine counteract the effect of urea on pyruvate kinase; Kidney Int. Suppl. 57 S100–S104

    PubMed  CAS  Google Scholar 

  • Burg M B and Peters E M 1997 Urea and methylamines have similar effects on aldose reductase activity; Am. J. Physiol. 273 F1048–F1053

    PubMed  CAS  Google Scholar 

  • Chambers S and Kunin C M 1985 The osmoprotective properties of urine for bacteria: the protective effect of betaine and human urine against low pH and high concentrations of electrolytes, sugars, and urea; J. Infect. Dis. 152 1308–1316

    PubMed  CAS  Google Scholar 

  • Clark M E and Jounes M 1977 The effects of selected cell osmolytes on the activity of lactate dehydrogenase from the euryhaline polychaete Neries succinea; Biol. Bull. 153 468

    Article  CAS  Google Scholar 

  • Cohen D M and Gullans S R 1993 Urea induces Egr-1 and c-fos expression in renal epithelial cells; Am. J. Physiol. 264 F593–F600

    PubMed  CAS  Google Scholar 

  • Cohen D M, Gullans S R and Chin W W 1996 Urea signaling in cultured murine inner medullary collecting duct (mIMCD3) cells involves protein kinase C, inositol 1,4,5-trisphosphate (IP3), and a putative receptor tyrosine kinase; J. Clin. Invest. 97 1884–1889

    Article  PubMed  CAS  Google Scholar 

  • Collins K D and Washabaugh M W 1985 The Hofmeister effect and the behaviour of water at interfaces; Q. Rev. Biophys. 18 323–422

    Article  PubMed  CAS  Google Scholar 

  • Colmont C, Michelet S, Guivarc’h D and Rousselet G 2001 Urea sensitizes mIMCD3 cells to heat shock-induced apoptosis: protection by NaCl; Am. J. Physiol. Cell Physiol. 280 C614–C620

    PubMed  CAS  Google Scholar 

  • Costanzo J P and Lee R E Jr 2005 Cryoprotection by urea in a terrestrially hibernating frog; J. Exp. Biol. 208 4079–4089

    Article  PubMed  Google Scholar 

  • Creighton T E 1991 Stability of folded conformations; Curr. Opin. Struct. Biol. 1 5–16

    Article  CAS  Google Scholar 

  • De Meis L and Inesi G 1988 Effects of organic solvents, methylamines, and urea on the affinity for Pi of the Ca2+-ATPase of sarcoplasmic reticulum; J. Biol. Chem. 263 157–161

    PubMed  Google Scholar 

  • Etheridge K 1990 Water balance in estivating sirenid salamanders (Siren lacertina); Herpetologica 46 400–406

    Google Scholar 

  • Foord R L and Leatherbarrow R J 1998 Effect of osmolytes on the exchange rates of backbone amide protons in proteins; Biochemistry 37 2969–2978

    Article  PubMed  CAS  Google Scholar 

  • Funkhouser D and Goldstein L 1973 Urea response to pure osmotic stress in the aquatic total Xenopus laevis; Am. J. Physiol. 224 524–529

    PubMed  CAS  Google Scholar 

  • Garcia-Perez A and Burg M B 1991 Renal medullary organic osmolytes; Physiol. Rev. 71 1081–1115

    PubMed  CAS  Google Scholar 

  • Gerlsma S Y 1968 Reversible denaturation of ribonuclease in aqueous solutions as influenced by polyhydric alcohols and some other additives; J. Biol. Chem. 243 957–961

    PubMed  CAS  Google Scholar 

  • Goldstein L 1972 Adaptation of urea metabolism in aquatic vertebrates; in Nitrogen metabolism and the environment (eds) J W Campbell and L Goldstein (New York: Academic Press) pp 55–77

    Google Scholar 

  • Griffith R W 1991 Guppies, toadfish, lungfish, coelacanths and frogs: a scenario for the evolution of urea retention in fishes; Environ. Biol. Fishes 32 199–218

    Article  Google Scholar 

  • Griffith R W, Pang P K T and Benedetto L A 1979 Urea tolerance in the killifish, Fundulus heteroclitus; Comp. Biochem. Physiol. 6A 327–330

    Article  Google Scholar 

  • Griko Y V 2000 Energetic basis of structural stability in the molten globule state: alpha-lactalbumin; J. Mol. Biol. 297 1259–1268

    Article  PubMed  CAS  Google Scholar 

  • Griko Y V, Freire E and Privalov P L 1994 Energetics of the alpha-lactalbumin states: a calorimetric and statistical thermodynamic study; Biochemistry 33 1889–1899

    Article  PubMed  CAS  Google Scholar 

  • Hand S C and Somero G N 1982 Urea and methylamine effects on rabbit muscle phosphofructokinase. Catalytic stability and aggregation state as a function of pH and temperature; J. Biol. Chem. 257 734–741

    PubMed  CAS  Google Scholar 

  • Haussinger D and Lang F 1992 Cell volume and hormone action; Trends Pharmacol. Sci. 13 371–373

    Article  PubMed  CAS  Google Scholar 

  • Hochachka P W and Somero G N 1984 Biochemical adaptation (New Jersey: Princeton University Press)

    Google Scholar 

  • Hochachka P W and Somero G N 2002 Biochemical adaptation (New York: Oxford University Press)

    Google Scholar 

  • Holthauzen L M and Bolen D W 2007 Mixed osmolytes: the degree to which one osmolyte affects the protein stabilizing ability of another; Protein Sci. 16 293–298

    Article  PubMed  CAS  Google Scholar 

  • Jones R M 1980 Metabolic consequences of accelerated urea synthesis during seasonal dormancy of spadefoot toads, Scaphiopus couchi and Scaphiopus multiplicatus; J. Exp. Zool. 212 255–267

    Article  CAS  Google Scholar 

  • Jørgensen C B 1997 Urea and amphibian water economy; Comp. Biochem. Physiol. A117 161–170

    Article  Google Scholar 

  • Katz U and Hanke W 1993 Mechanisms of hyperosmotic acclimation in Xenopus laevis (salt, urea or mannitol); J. Comp. Physiol. B163 189–195

    Google Scholar 

  • Kaushik J K and Bhat R 1998 Thermal stability of proteins in aqueous polyol solutions; J. Phys. Chem. B 102 7058–7066

    Article  CAS  Google Scholar 

  • Kim Y S, Jones L S, Dong A, Kendrick B S, Chang B S, Manning M C, Randolph T W and Carpenter J F 2003 Effects of sucrose on conformational equilibria and fluctuations within the native-state ensemble of proteins; Protein Sci. 12 1252–1261

    Article  PubMed  CAS  Google Scholar 

  • King P A and Goldstein L 1983 Renal ammoniagenesis and acid excretion in the dogfish, Squalus acanthias; Am. J. Physiol. 245 R581–R589

    PubMed  CAS  Google Scholar 

  • Kraus M L and Kraus A P Jr 2001 Carbomylation of amino acids and proteins in uremia; Kidney Int. 78 102–107

    Article  Google Scholar 

  • Lin T Y and Timasheff S N 1994 Why do some organisms use a urea-methylamine mixture as osmolyte? Thermodynamic compensation of urea and trimethylamine N-oxide interactions with protein; Biochemistry 33 12695–12701

    Article  PubMed  CAS  Google Scholar 

  • Loveridge P and Withers P C 1981 Metabolism and water balance of active and cocooned African bull-frogs Pyxicephalus adspersus; Physiol. Zool. 54 203–214

    CAS  Google Scholar 

  • Lushchak V I and Lushchak L P 1994 The effect of urea on the activity of lactate dehydrogenase from the muscles of swine and skates; Zh. Evol. Biokhim. Fiziol. 30 185–191

    PubMed  CAS  Google Scholar 

  • MacMillen R E and Lee A K 1967 Australian desert mice: independence of exogenous water; Science 158 383–385

    Article  PubMed  CAS  Google Scholar 

  • Mandal A K, Samaddar S, Banerjee R, Lahiri S, Bhattacharyya A and Roy S 2003 Glutamate counteracts the denaturing effect of urea through its effect on the denatured state; J. Biol. Chem. 278 36077–36084

    Article  PubMed  CAS  Google Scholar 

  • Mashino T and Fridovich I 1987 Effects of urea and trimethylamine-N-oxide on enzyme activity and stability; Arch. Biochem. Biophys. 258 356–360

    Article  PubMed  CAS  Google Scholar 

  • McBean R L and Goldstein L 1970 Renal function during osmotic stress in the aquatic toad Xenopus laevis; Am. J. Physiol. 219 1115–1123

    PubMed  CAS  Google Scholar 

  • McClanahan L L 1972 Changes in body fluids of burrowed spadefoot toads as a function of soil water potential; Copeia 1972 209–216

    Article  Google Scholar 

  • Medina R, Cantley L, Spokes K and Epstein F H 1996 Effect of water diuresis and water restriction on expression of HSPs-27, −60 and −70 in rat kidney; Kidney Int. 50 1191–1194

    Article  PubMed  CAS  Google Scholar 

  • Mello C C and Barrick D 2003 Measuring the stability of partly folded proteins using TMAO; Protein Sci. 12 1522–1529

    Article  PubMed  CAS  Google Scholar 

  • Michea L, Ferguson D R, Peters E M, Andrews P M, Kirby M R and Burg M B 2000 Cell cycle delay and apoptosis are induced by high salt and urea in renal medullary cells; Am. J. Physiol. Renal Physiol. 278 F209–F218

    PubMed  CAS  Google Scholar 

  • Mirsalikhova N M 1978 Stabilization of Na+, K+-adenosine triphosphatase by dimethyl sulfoxide under inactivation by urea; Biokhimiia 43 34–39

    PubMed  CAS  Google Scholar 

  • Muller E, Neuhofer W, Burger-Kentischer A, Ohno A, Thurau K and Beck F X 1998 Effects of long-term changes in medullary osmolality on heat shock proteins; Arch. Eur. J. Physiol. 435 705–712

    Article  CAS  Google Scholar 

  • Myers J S and Jakoby W B 1975 Glycerol as an agent eliciting small conformational changes in alcohol dehydrogenase; J. Biol. Chem. 250 3785–3789

    PubMed  CAS  Google Scholar 

  • Neuhofer W and Beck F X 2005 Cell survival in the hostile environment of the renal medulla; Annu. Rev. Physiol. 67 531–555

    Article  PubMed  CAS  Google Scholar 

  • Neuhofer W, Fraek M L, Ouyang N and Beck F X 2005 Differential expression of heat shock protein 27 and 70 in renal papillary collecting duct and interstitial cells — implications for urea resistance; J. Physiol. 564 715–722

    Article  PubMed  CAS  Google Scholar 

  • Neuhofer W, Lugmayr K, Fraek M L and Beck F X 2001 Regulated overexpression of heat shock protein 72 protects Madin-Darby canine kidney cells from the detrimental effects of high urea concentrations; J. Am. Soc. Nephrol. 12 2565–2571

    PubMed  CAS  Google Scholar 

  • Neuhofer W, Muller E, Burger-Kentischer A, Fraek M L, Thurau K and Beck F X 1999 Inhibition of NaCl-induced heat shock protein 72 expression renders MDCK cells susceptible to high urea concentrations; Pflugers Arch. 437 611–616

    Article  PubMed  CAS  Google Scholar 

  • Nozaki Y and Tanford C 1963 The solubility of amino acids and related compounds in aqueous urea solutions; J. Biol. Chem. 238 4074–4081

    PubMed  CAS  Google Scholar 

  • Nystrom T 2005 Role of oxidative carbonylation in protein quality control and senescence; EMBO J. 24 1311–1317

    Article  PubMed  CAS  Google Scholar 

  • Pang P K T, Griffith R W and Atz J W 1977 Osmoregulation in elasmobranchs; Am. Zool. 17 365–377

    CAS  Google Scholar 

  • Pinder A W, Storey K B and Ultsch G R 1992 Estivation and hibernation; in Environmental physiology of the amphibians (eds) M E Feder and W W Burggren (Chicago, Illinois: The University of Chicago Press) pp 250–274

    Google Scholar 

  • Pollard A and Wyn Jones R G 1979 Enzyme activities in concentrated solutions of glycine betaine and other solutes; Planta 144 291–298

    Article  CAS  Google Scholar 

  • Privalov P L, Tiktopulo E I, Venyaminov S, Griko Yu, V Makhatadze G I and Khechinashvili N N 1989 Heat capacity and conformation of proteins in the denatured state; J. Mol. Biol. 205 737–750

    Article  PubMed  CAS  Google Scholar 

  • Prosser C L 1973 Comparative animal physiology 3rd edition (Philadelphia: W B Saunders)

    Google Scholar 

  • Prosser C L and Brown F A 1961 Comparative animal physiology 2nd edition (Philadelphia: W B Saunders)

    Google Scholar 

  • Qu Y and Bolen D W 2003 Hydrogen exchange kinetics of RNase A and the urea:TMAO paradigm; Biochemistry 42 5837–5849

    Article  PubMed  CAS  Google Scholar 

  • Robertson D E, Lai M C, Gunsalus R P and Roberts M F 1992 Composition, variation, and dynamics of major osmotic solutes in Methanohalophilus strain FDF1; Appl. Environ. Microbiol. 58 2438–2443

    PubMed  CAS  Google Scholar 

  • Robinson D R and Jencks W P 1965 The effect of compounds of the urea-guanidinium class on the activity coefficient of acetyltetraglycine ethyl ester and related compounds; J. Am. Chem. Soc. 87 2462–2470

    Article  PubMed  CAS  Google Scholar 

  • Romspert A P 1976 OsmoreguIation of the African clawed frog, Xenopus laevis in hypersaline media; Comp. Biochem. Physiol. 54A 207–210

    Article  Google Scholar 

  • Santoro M M, Liu Y, Khan S M, Hou L X and Bolen D W 1992 Increased thermal stability of proteins in the presence of naturally occurring osmolytes; Biochemistry 31 5278–5283

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen K 1997 Animal physiology: adaption and environment 5th edition (Cambridge, UK: Cambridge University Press)

    Google Scholar 

  • Shifrin S and Parrott C L 1975 Influence of glycerol and other polyhydric alcohol on the quaternary structure of an oligometric protein; Arch. Biochem. Biophys. 166 426–432

    Article  PubMed  CAS  Google Scholar 

  • Shim E H, Kim J I, Bang E S, Heo J S, Lee J S, Kim E Y, Lee J E, Park W Y, Kim S H, Kim H S, Smithies O, Jang J J, Jin D I and Seo J S 2002 Targeted disruption of hsp70.1 sensitizes to osmotic stress; EMBO Rep. 3 857–861

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker V H, Hillman S S, Hillyard S D, Jackson D C, MccLanahan L L, Withers P C and Wygoda M 1992 Exchange of water, ions and respiratory gases in terrestrial amphibians; in Environmental physiology of the amphibia (eds) M E Feder and W W Burggren (Chicago: University of Chicago Press) pp 125–150

    Google Scholar 

  • Shpun S, Hoffman J and Katz U 1992 Anuran amphibia which are not acclimable to high salt, tolerate high plasma urea; Comp. Biochem. Physiol. 103A 473–477

    Article  CAS  Google Scholar 

  • Singh R, Ali Dar T, Ahmad S, Moosavi-Movahedi A A and Ahmad F 2008 A new method for determining the constant-pressure heat capacity change associated with the protein denaturation induced by guanidinium chloride (or urea); Biophys. Chem. 133 81–89

    Article  PubMed  CAS  Google Scholar 

  • Somero G N 1986 Protons, osmolytes, and fitness of internal milieu for protein function; Am. J. Physiol. 251 R197–R213

    PubMed  CAS  Google Scholar 

  • Taneja S and Ahmad F 1994 Increased thermal stability of proteins in the presence of amino acids; Biochem. J. 303 147–153

    PubMed  CAS  Google Scholar 

  • Vieyra A, Caruso-Neves C and Meyer-Fernandes J R 1991 ATP in equilibrium with 32Pi exchange catalyzed by plasma membrane Ca(2+)-ATPase from kidney proximal tubules; J. Biol. Chem. 266 10324–10330

    PubMed  CAS  Google Scholar 

  • Von Hippel P H and Schleich T 1969 Structure and stability of biological macromolecules (eds) S N Timasheff and G D Fasman (New York: Dekker) pp 417–574

    Google Scholar 

  • Wang A and Bolen D W 1996 Effect of proline on lactate dehydrogenase activity: testing the generality and scope of the compatibility paradigm; Biophys. J. 71 2117–2122

    Article  PubMed  CAS  Google Scholar 

  • Wang A and Bolen D W 1997 A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation; Biochemistry 36 9101–9108

    Article  PubMed  CAS  Google Scholar 

  • Withers P C and Guppy M 1996 Do Australian desert frogs coaccumulate counteracting solutes with urea during aestivation?; J. Exp. Biol. 199 1809–1816

    PubMed  CAS  Google Scholar 

  • Withycombe W A, Plummer D T and Wilkinson J H 1965 Organ specificity and lactate-dehydrogenase activity. Differential inhibition by urea and related compounds; Biochem. J. 94 384–389

    PubMed  CAS  Google Scholar 

  • Wolff S D and Balaban R S 1990 Regulation of the predominant renal medullary organic solutes in vivo; Annu. Rev. Physiol. 52 727–746

    Article  PubMed  CAS  Google Scholar 

  • Woolverton W S, Githens S, O’Dell-Smith R and Bartell C K 1990 Rat renal papillary tissue explants survive and produce epithelial monolayers in culture media made hyperosmotic with sodium chloride and urea; J. Exp. Zool. 256 189–199

    Article  PubMed  CAS  Google Scholar 

  • Wray S and Wilkie D R 1995 The relationship between plasma urea levels and some muscle trimethylamine levels in Xenopus laevis: a 31P and 14N nuclear magnetic resonance study; J. Exp. Biol. 198 373–378

    PubMed  CAS  Google Scholar 

  • Wu J W and Wang Z X 1999 New evidence for the denaturant binding model; Protein Sci. 8 2090–2097

    Article  PubMed  CAS  Google Scholar 

  • Wyn Jones R G, Storey R, Leigh R A, Ahmad N and Pollard A 1977 A hypothesis on cytoplasmic osmoregulation; in Regulation of cell membrane activities in plants (eds) E Marre and O Ciferri (North Holland, Amsterdam: Elsevier) pp 121–136

    Google Scholar 

  • Xie G and Timasheff S N 1997a Mechanism of the stabilization of ribonuclease A by sorbitol: preferential hydration is greater for the denatured than for the native protein; Protein Sci. 6 211–221

    PubMed  CAS  Google Scholar 

  • Xie G and Timasheff S N 1997b Temperature dependence of the preferential interactions of ribonuclease A in aqueous co-solvent systems: thermodynamic analysis; Protein Sci. 6 222–232

    Article  PubMed  CAS  Google Scholar 

  • Yancey P H 1985 Organic osmotic effectors in cartilaginous fishes; In Transport processes iono- and osmo-regulation (eds) R Gilles and M Gilles-Ballie (Berlin: Springer-Verlag) pp 424–436

    Google Scholar 

  • Yancey P H 1988 Osmotic effectors in kidneys of xeric and mesic rodents: corticomedullary distributions and changes with water availability; J. Comp. Physiol. [B] 158 369–380

    CAS  Google Scholar 

  • Yancey P H 1992 Compatible and counteracting aspects of organic osmolytes in mammalian kidney cells in vivo and in vitro; in Water and life: a comparative analysis of water relationship at the organismic, cellular and molecular levels (eds) G N Somero, C B Osmond and C L Bolis (Berlin: Springer-Verlag) p. 19

    Google Scholar 

  • Yancey P H 1994 Compatible and counteracting solutes; in Cellular and molecular physiology of cell volume regulation (ed.) K Strange (Boca Raton: CRC Press) pp 81–109

    Google Scholar 

  • Yancey P H 2003 Proteins and counteracting osmolytes; Biologist 50 126–131

    Google Scholar 

  • Yancey P H 2004 Compatible and counteracting solutes: protecting cells from the Dead Sea to the deep sea; Sci. Prog. 87 1–24

    Article  PubMed  CAS  Google Scholar 

  • Yancey P H and Burg M B 1990 Counteracting effects of urea and betaine in mammalian cells in culture; Am. J. Physiol. 258 R198–R204

    PubMed  CAS  Google Scholar 

  • Yancey P H, Clark M E, Hand S C, Bowlus R D and Somero G N 1982 Living with water stress: evolution of osmolyte systems; Science 217 1214–1222

    Article  PubMed  CAS  Google Scholar 

  • Yancey P H and Siebenaller J F 1999 Trimethylamine oxide stabilizes teleost and mammalian lactate dehydrogenases against inactivation by hydrostatic pressure and trypsinolysis; J. Exp. Biol. 202 3597–3603

    PubMed  CAS  Google Scholar 

  • Yancey P H and Somero G N 1978 Urea-requiring lactate dehydrogenases of marine elasmobranch fishes; J. Comp. Physiol. 125 135–141

    CAS  Google Scholar 

  • Yancey P H and Somero G N 1979 Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes; Biochem. J. 183 317–323

    PubMed  CAS  Google Scholar 

  • Yancey P H and Somero G N 1980 Methylamine osmoregulatory compounds in elasmobranch fishes reverse urea inhibition of enzymes; J. Exp. Zool. 212 205–213

    Article  CAS  Google Scholar 

  • Yokota S D, Benyajati S and Dantzler W H 1985 Comparative aspects of glomerular filtration in vertebrates; Ren. Physiol. 8 193–221

    PubMed  CAS  Google Scholar 

  • Zhang Z, Yang X Y and Cohen D M 1999 Urea-associated oxidative stress and Gadd153/CHOP induction; Am. J. Physiol. 276 F786–F793

    PubMed  CAS  Google Scholar 

  • Zhang Z, Yang X Y, Soltoff S P and Cohen D M 2000 PI3K signaling in the murine kidney inner medullary cell response to urea; Am. J. Physiol. Renal. Physiol. 278 F155–F164

    PubMed  CAS  Google Scholar 

  • Zheng Z T W and C D M 2000 Urea protects from the proapoptotic effect of NaCl in renal medullary cells; Am. J. Physiol. Renal Physiol. 279 345–352

    Google Scholar 

  • Zou Q, Habermann-Rottinghaus S M and Murphy K P 1998 Urea effects on protein stability: hydrogen bonding and the hydrophobic effect; Proteins 31 107–115

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faizan Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, L.R., Dar, T.A. & Ahmad, F. Living with urea stress. J Biosci 34, 321–331 (2009). https://doi.org/10.1007/s12038-009-0036-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-009-0036-0

Keywords

Navigation