Skip to main content

Advertisement

Log in

Rapid aggregation and assembly in aqueous solution of Aβ (25–35) peptide

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The highly toxic Aβ(25–35) is a peculiar peptide that differs from all the other commonly studied β-amyloid peptides because of its extremely rapid aggregation properties and enhanced neurotoxicity. We investigated Aβ(25–35) aggregation in H2O at pH 3.0 and at pH 7.4 by means of in-solution analyses. Adopting UV spectroscopy, Congo red spectrophotometry and thioflavin T fluorimetry, we were able to quantify, in water, the very fast assembling time necessary for Aβ(25–35) to form stable insoluble aggregates and their ability to seed or not seed fibril growth. Our quantitative results, which confirm a very rapid assembly leading to stable insoluble aggregates of Aβ(25–35) only when incubated at pH 7.4, might be helpful for designing novel aggregation inhibitors and to shed light on the in vivo environment in which fibril formation takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

Alzheimer disease

DMSO:

dimethyl sulphoxide

HFIP:

hexafluorisopropanol

IBM:

inclusion body myositis

NCC:

nucleated conformational conversion’

OD:

optical density

PBS:

phosphate buffered saline

pI:

isoelectric point

SDS:

sodium dodecyl sulphate

TFA:

trifluoroacetic acid

Th-T:

thioflavin-T

References

  • Baglioni S, Casamenti F, Bucciantini M, Luheshi L M, Taddei N, Chiti F, Dobson C M and Stefani M 2006 Prefibrillar amyloid aggregates could be generic toxins in higher organisms; J. Neurosci. 26 8160–8167

    Article  PubMed  CAS  Google Scholar 

  • Ban J Y, Nguyen H T, Lee H J, Cho S O, Ju H S, Kim J Y, Bae K, Song K S and Seong Y H 2008 Neuroprotective properties of gallic acid from Sanguisorbae radix on amyloid beta protein (25–35)-induced toxicity in cultured rat cortical neurons; Biol. Pharm. Bull. 31 149–153

    Article  PubMed  CAS  Google Scholar 

  • Ban T, Hamada D, Hasegawa K, Naiki H and Goto Y 2003 Direct observation of amyloid fibril growth monitored by Th-T fluorescence; J. Biol. Chem. 278 16462–16465

    Article  PubMed  CAS  Google Scholar 

  • Bieschke J, Siegel SJ, Fu Y and Kelly JW 2008 Alzheimer’s abeta peptides containing an isostructural backbone mutation afford distinct aggregate morphologies but analogous cytotoxicity. Evidence for a common low-abundance toxic structure(s); Biochemistry 47 50–59

    Article  PubMed  CAS  Google Scholar 

  • Bitan G and Teplow D B 2005 Preparation of aggregate-free, low molecular weight amyloid-beta for assembly and toxicity assays; Methods Mol. Biol. 299 3–9

    PubMed  CAS  Google Scholar 

  • Bradford M M 1976 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding; Anal. Biochem. 72 248–254

    Article  PubMed  CAS  Google Scholar 

  • Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A, Yates J, Cotman C and Glabe C 1992 Assembly and aggregation properties of synthetic Alzheimer’s A4/b amyloid peptide analogs; J. Biol. Chem. 267 546–554

    PubMed  CAS  Google Scholar 

  • Calamai M, Chiti F and Dobson C M 2005 Amyloid fibril formation can proceed from different conformations of a partially unfolded protein; Biophys. J. 89 4201–4210

    Article  PubMed  CAS  Google Scholar 

  • Carrotta R, Manno M, Bulone D, Martorana V, and San Biagio P L 2005 Protofibril formation of amyloid β-protein at low pH via a non-cooperative elongation mechanism; J. Biol. Chem. 280 30001–30008

    Article  PubMed  CAS  Google Scholar 

  • Clementi M E, Marini S, Coletta M, Orsini F, Giardina B and Misiti F 2005 Aβ(31–35) and Aβ(25–35) fragments of amyloid β-protein induce cellular death through apoptotic signals: role of the redox state of methionine-35; FEBS Lett. 579 2913–2918

    Article  PubMed  CAS  Google Scholar 

  • Collins S R, Douglass A, Vale R D and Weissman J S 2004 Mechanism of prion propagation: amyloid growth occurs by monomer addition; PLoS Biol. 2 e321

    Article  PubMed  CAS  Google Scholar 

  • Dobson C M 2006 Protein aggregation and its consequences for human disease; Protein Pept. Lett. 13 219–227

    Article  PubMed  CAS  Google Scholar 

  • D’Ursi A M, Armenante M R, Guerrini R, Salvadori S, Sorrentino G and Picone D 2004 Solution structure of amyloid beta-peptide (25–35) in different media; J. Med. Chem. 12 4231–4238

    Article  CAS  Google Scholar 

  • Eisert R, Felau L and Brown L R 2006 Methods for enhancing the accuracy and reproducibility of Congo Red and Th-T assays; Anal. Biochem. 353 144–146

    Article  PubMed  CAS  Google Scholar 

  • Gazit E 2005 Mechanisms of amyloid fibril self-assembly and inhibition. Model short peptides as a key research tool; FEBS J. 272 5971–5978

    Article  PubMed  CAS  Google Scholar 

  • Hölscher C 2005 Development of beta-amyloid-induced neurodegeneration in Alzheimer’s disease and novel neuro-protective strategies; Rev. Neurosci. 16 181–212

    PubMed  Google Scholar 

  • Holscher C, Gengler S, Gault V A, Harriott P and Mallot H A 2007 Soluble beta-amyloid(25–35) reversibly impairs hippocampal synaptic plasticity and spatial learning; Eur. J. Pharmacol. 561 85–90

    Article  PubMed  CAS  Google Scholar 

  • Jayaraman M, Kannayiram G and Rajadas J 2008 Amyloid toxicity in skeletal myoblasts: implications for inclusion-body myositis; Arch. Biochem. Biophys. 474 15–21

    Article  PubMed  CAS  Google Scholar 

  • Klunk W E, Pettegrew J V and Abrham D J 1998 Quantitative evaluation of Congo Red binding to amyloid-like proteins with a beta-pleated sheet conformation; J. Histochem. Cytochem. 37 1273–1281

    Google Scholar 

  • Korczyn A D 2008 The amyloid cascade hypothesis; Alzheimers Dement. 4 176–178

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Nishimura S, Kumagae Y and Kaneko Y 2002 In vivo conversion of racemized beta-amyloid ((D-Ser 26)A beta 1–40) to truncated and toxic fragments ((D-Ser 26)A beta 25-35/40) and fragment presence in the brains of Alzheimer’s patients; J. Neurosci. Res. 70 474–483

    Article  PubMed  CAS  Google Scholar 

  • LeVine H 3rd 1997 Stopped-flow kinetics reveal multiple phase of Th-T binding to Alzheimer β(1–40) amyloid fibrils; Arch. Biochem. Biophys. 342 306–316

    Article  PubMed  CAS  Google Scholar 

  • LeVine H 2004 Alzheimer’s beta-peptide oligomer formation at physiologic concentrations; Anal. Biochem. 335 81–90

    Article  PubMed  CAS  Google Scholar 

  • Maurice T, Lockhart B P and Privat A 1996 Amnesia induced in mice by centrally administered β-amyloid peptides involves cholinergic dysfunction; Brain Res. 706 181

    Article  PubMed  CAS  Google Scholar 

  • Meinke J H and Hansmann U H 2007 Aggregation of beta-amyloid fragments; J. Chem. Phys. 126 014706

    Google Scholar 

  • Misiti F, Sampaolese B, Pezzotti M, Marini S, Coletta M, Ceccarelli L, Giardina B and Clementi M E 2005 Aβ(31–35) peptide induces apoptosis in pc 12 cells: contrast with Aβ (25–35) peptide and examination of underlying mechanisms; Neurochem. Int. 46 575–583

    Article  PubMed  CAS  Google Scholar 

  • Nesgaard L, Vad B, Christiansen G and Otzen D 2009 Kinetic partitioning between aggregation and vesicle permeabilization by modified ADan; Biochim. Biophys. Acta 1794 84–93

    PubMed  CAS  Google Scholar 

  • Petkova A T, Leapman R D, Guo Z, Yau W M, Mattson M P and Tycko R 2005 Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils; Science 307 262–265

    Article  PubMed  CAS  Google Scholar 

  • Pike C J, Burdick D, Walencewicz A Z, Glabe C G and Cotman C W 1993 Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state; J. Neurosci. 13 1676–1687

    PubMed  CAS  Google Scholar 

  • Pike C J, Walencewicz-Wasserman A J, Kosmoski J, Cribbs D H, Glabe C G and Cotman C W 1995 Structure-activity analyses of β-amyloid peptides: contributions of the β 25–35 region to aggregation and neurotoxicity; J. Neurochem. 64 253–265

    Article  PubMed  CAS  Google Scholar 

  • Platt G W, McParland V J, Kalverda A P, Homans S W and Radford S E 2005 Dynamics in the unfolded state of beta2-microglobulin studied by NMR; J. Mol. Biol. 346 279–294

    Article  PubMed  CAS  Google Scholar 

  • Roychaudhuri R, Yang M, Hoshi M M and Teplow D B 2008 Amyloid beta-protein assembly and Alzheimer’s disease; J. Biol. Chem. 8 4749–4753

    Article  CAS  Google Scholar 

  • Serio T R, Cashikar A G, Kowal A S, Sawicki G J, Moslehi J J, Serpell L, Amsdorf M F and Lindquist S L 2000 Nucleated conformational conversion and the replication of conformational information by a prion determinant; Science 289 1317–1321

    Article  PubMed  CAS  Google Scholar 

  • Simmons L K, May P C, Tomaselli K J, Rydel R E, Fuson K S, Brigham E F, Wright S, Lieberburg I, Becker G W and Brems D N 1994 Secondary structure of amyloid beta peptide correlates with neurotoxic activity in vitro; Mol. Pharmacol. 45 373–379

    PubMed  CAS  Google Scholar 

  • Smith A M, Jahn T R, Ashcroft A E and Radford S E 2006 Direct observation of oligomeric species formed in the early stages of amyloid fibril formation using electrospray ionisation mass spectrometry; J. Mol. Biol. 364 9–19

    Article  PubMed  CAS  Google Scholar 

  • Snyder S W, Ladror U S, Wade W S, Wang G T, Barrett L W, Matayoshi E D, Huffaker H J, Krafft G A and Holzman T F 1994 Amyloid-β aggregation: selective inhibition in mixtures of amyloid with different chain lengths; Biophys. J. 67 1216–1228

    Article  PubMed  CAS  Google Scholar 

  • Stefani M 2007 Generic cell dysfunction in neurodegenerative disorders: role of surfaces in early protein misfolding, aggregation, and aggregate cytotoxicity; Neuroscientist 13 519–531

    Article  PubMed  CAS  Google Scholar 

  • Takadera T, Sakura N, Mohri T and Hashimoto T 1993 Toxic effect of a beta-amyloid peptide (beta 22–35) on the hippocampal neuron and its prevention; Neurosci. Lett. 161 41–44

    Article  PubMed  CAS  Google Scholar 

  • Walsh D M and Selkoe D J 2004 Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration; Protein Pept. Lett. 11 213–228

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Chang Y, Chen P and Liu K 2004 A kinetic study on the aggregation behavior of β-amyloid peptides in different initial solvent environments; Biochem. Eng. J. 29 129–138

    Article  CAS  Google Scholar 

  • Wei G and Shea G E 2006 Effects of solvent on the structure of the Alzheimer amyloid-beta(25–35) peptide; Biophys. J. 91 1638–1647

    Article  PubMed  CAS  Google Scholar 

  • Wood S J, Maleeff B, Hart T and Wetzel R 1996 Physical, morphological and functional differences between pH 5.8 and 7.4 aggregates of the Alzheimers amyloid peptide Aβ; J. Mol. Biol. 256 870–877

    Article  PubMed  CAS  Google Scholar 

  • Yoshiike Y, Tanemura K, Murayama O, Akagi T, Murayama M, Sato S, Sun X, Tanaka N and Takashima A 2001 New insights on how metals disrupt amyloid beta-aggregation and their effects on amyloid-beta cytotoxicity; J. Biol. Chem. 276 32293–32299

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Santucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millucci, L., Raggiaschi, R., Franceschini, D. et al. Rapid aggregation and assembly in aqueous solution of Aβ (25–35) peptide. J Biosci 34, 293–303 (2009). https://doi.org/10.1007/s12038-009-0033-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-009-0033-3

Keywords

Navigation