Skip to main content
Log in

Functional role of EF-hands 3 and 4 in membrane-binding of KChIP1

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The aim of the present study is to explore whether membrane targeting of K+ channel-interacting protein 1 (KChIP1) is associated with its EF-hand motifs and varies with specific phospholipids. Truncated KChIP1, in which the EFhands 3 and 4 were deleted, retained the α-helix structure, indicating that the N-terminal half of KChIP1 could fold appropriately. Compared with wild-type KChIP1, truncated KChIP1 exhibited lower lipid-binding capability. Compared with wild-type KChIP1, increasing membrane permeability by the use of digitonin caused a marked loss of truncated KChIP1, suggesting that intact EF-hands 3 and 4 were crucial for the anchorage of KChIP1 on membrane. KChIP1 showed a higher binding capability with phosphatidylserine (PS) than truncated KChIP1. Unlike that of truncated KChIP1, the binding of wild-type KChIP1 with membrane was enhanced by increasing the PS content. Moreover, the binding of KChIP1 with phospholipid vesicles induced a change in the structure of KChIP1 in the presence of PS. Taken together, our data suggest that EF-hands 3 and 4 of KChIP1 are functionally involved in a specific association with PS on the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANS:

8-Anilino-1-naphthalene sulphonic acid

BSA:

bovine serum albumin

CD:

circular dichroism

DMEM:

Dulbecco modified Eagle medium

ELISA:

enzyme-linked immunosorbent assay

FTIR:

Fourier transform infrared

GCAP:

guanylyl cyclase-activating protein

GFP:

green fluorescent protein

HRP:

horseradish peroxidase

KChIP:

K+ channel-interacting protein

MLV:

multilamellar large vesicles

NCS:

neuronal calcium sensor

ORF:

open reading frame

PA:

phosphatidic acid

PC:

phosphatidylcholine

PCR:

polymerase chain reaction

PE:

phosphatidylethanolamine

PI:

phosphatidylinositol

PMSF:

phenylmethylsulphonyl fluoride

PS:

phosphatidylserine

References

  • Ames J B, Ishima R, Tanaka T, Gordon J I, Stryer L and Ikura M 1997 Molecular mechanics of calcium-myristoyl switches; Nature (London) 389 198–202

    Article  CAS  Google Scholar 

  • Ames J B, Hendricks K B, Strahl T, Huttner I G, Hamasaki N and Thorner J 2000 Structure and calcium-binding properties of Frq1, a novel calcium sensor in the yeast Saccharomyces cerevisiae; Biochemistry 39 12149–12161

    Article  PubMed  CAS  Google Scholar 

  • Barth A and Zscherp C 2002 What vibrations tells us about proteins; Q. Rev. Biophys. 35 369–430

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne R D, O’Callaghan D W, Hasdemir B, Haynes L P and Tepikin A V 2004 Neuronal Ca2+-sensor proteins: multitalented regulators of neuronal function; Trends Neurosci. 27 203–209

    Article  PubMed  CAS  Google Scholar 

  • Chang L S, Chen C Y and Wu T T 2003 Functional implication with the metal-binding properties of KChIP1; Biochem. Biophys. Res. Commun. 311 258–263

    Article  PubMed  CAS  Google Scholar 

  • Chang L S, Lin S R and Chang C C 1996 The essentiality of calcium ion in the enzymatic activity of Taiwan cobra phospholipase A2; J. Protein Chem. 15 701–707

    Article  PubMed  CAS  Google Scholar 

  • Desmeules P, Penney S E, Desbat B and Salesse C 2007 Determination of the contribution of the myristoyl group and hydrophobic amino acids of recoverin on its dynamics of binding to lipid monolayers; Biophys. J. 93 2069–2082

    Article  PubMed  CAS  Google Scholar 

  • Freites J A, Tobias D J, von Heijne G and White S H 2005 Interface connections of a transmembrane voltage sensor; Proc. Natl. Acad. Sci. USA 102 15059–15064

    Article  PubMed  CAS  Google Scholar 

  • Jeromin A, Muralidhar D, Parameswaran M N, Roder J, Fairwell T, Scarlata S, Dowal L, Mustafi S M, Chary K V and Sharma Y 2004 N-terminal myristoylation regulates calcium-induced conformational changes in neuronal calcium sensor-1; J. Biol. Chem. 279 27158–27167

    Article  PubMed  CAS  Google Scholar 

  • Kao P H, Chen K C, Lin S R and Chang L S 2008 The structural and functional contribution of N-terminal region and His-47 on Taiwan cobra phospholipase A2; J. Pept. Sci. 14 342–348

    Article  PubMed  CAS  Google Scholar 

  • Lazo N D and Downing D T 2001 Effect of Na2SO4 on hydrophobic and electrostatic interactions between amphipathic α-helices; J. Pept. Res. 58 457–463

    Article  PubMed  CAS  Google Scholar 

  • Lemmon M A 2008 Membrane recognition by phospholipidsbinding domains; Nat. Rev. Mol. Cell Biol. 9 99–111

    Article  PubMed  CAS  Google Scholar 

  • Lin L, Braunewell K H, Gundelfinger E D and Anand R 2002 Functional analysis of calcium-binding EF-hand motifs of visininlike protein-1; Biochem. Biophys. Res. Commun. 296 827–832

    Article  PubMed  CAS  Google Scholar 

  • Long S B, Campbell E B and MacKinnon R 2005 Voltage sensor of Kv1.2: structural basis of electromechanical coupling; Science 309 903–908

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin S and Aderem A 1995 The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions; Trends Biochem. Sci. 20 272–276

    Article  PubMed  CAS  Google Scholar 

  • Morohashi Y, Hatano N, Ohya S, Takikawa R, Watabiki T, Takasugi N, Imauzumi Y, Tomita T and Iwatsubo T 2002 Molecular cloning and characterization of CALP/KChIP4, a novel EF-hand protein interacting with presenilin 2 and voltage-gated potassium channel subunit Kv4; J. Biol. Chem. 277 14965–14975

    Article  PubMed  CAS  Google Scholar 

  • O’Callaghan D W, Hasdemir B, Leighton M and Burgoyne R D 2003 Residues within the myristoylation motif determine intracellular targeting of the neuronal Ca2+ sensor protein KChIP1 to post-ER transport vesicles and traffic of Kv4 K+ channels; J. Cell Sci. 116 4833–4845

    Article  PubMed  Google Scholar 

  • Park J B, Kim H J, Ryu P D and Moczydlowski E 2003 Effect of phosphatidylserine on unitary conductance and Ba2+ block of the BK Ca2+-activated K+ channel: re-examination of the surface charge hypothesis; J. Gen. Physiol. 121 375–397

    Article  PubMed  CAS  Google Scholar 

  • Peitzsch R M and McLaughlin S 1993 Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoylated proteins; Biochemistry 32 10436–10443

    Article  PubMed  CAS  Google Scholar 

  • Pioletti M, Findeisen F, Hura G L and Minor D L Jr 2006 Three-dimensional structure of the KChIP1-Kv4.3 T1 complex reveals a cross-shaped octamer; Nat. Struct. Mol. Biol. 13 987–995

    Article  PubMed  CAS  Google Scholar 

  • Pool C T and Thompson T E 1998 Chain length and temperature dependence of the reversible association of model acylated proteins with lipid bilayers; Biochemistry 37 10246–10255

    Article  PubMed  CAS  Google Scholar 

  • Resh M D 1999 Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins; Biochim. Biophys. Acta 1451 1–16

    Article  PubMed  CAS  Google Scholar 

  • Scannevin R H, Wang K, Jow F, Megules J, Kopsco D C, Edris W, Carroll K C, Lu Q, Xu W, Xu Z, Katz A H, Olland S, Lin L, Taylor M, Stahl M, Malakian K, Somers W, Mosyak L, Bowlby M R, Chanda P and Rhodes K J 2004 Two N-terminal domains of Kv4 K+ channels regulate binding to and modulation by KChIP1; Neuron 41 587–598

    Article  PubMed  CAS  Google Scholar 

  • Senin I I, Churumova V A, Philippov P P and Koch K W 2007 Membrane binding of the neuronal calcium sensor recoverin — modulatory role of the charged carboxy-terminus; BMC Biochem. 8 24

    Article  PubMed  Google Scholar 

  • Stephen R, Bereta G, Golczak M, Palczewski K and Sousa M C 2007 Stabilizing function for myristoyl group revealed by the crystal structure of a neuronal calcium sensor, guanylate cyclase-activating protein 1; Structure 15 1392–1402

    Article  PubMed  CAS  Google Scholar 

  • Van Meer G, Voelker D R and Feigenson G W 2008 Membranelipids: where they are and how they behave; Nat. Rev. Mol. Cell Mol. 9 112–124

    Article  Google Scholar 

  • Vogel A, Schröder T, Lange C and Huster D 2007 Characterization of the myristoyl lipid modification of membrane-bound GCAP-2 by 2H solid-state NMR spectroscopy; Biochim. Biophys. Acta 1768 3171–3181

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Yan Y, Liu Q, Huang Y, Shen Y, Chen L, Chen Y, Yang Q, Hao Q, Wang K and Chai J 2007 Structural basis for modulation of Kv4 K+ channels by auxiliary KChIP subunits; Nat. Neurosci. 10 32–39

    Article  PubMed  Google Scholar 

  • Xu Y, Ramu Y and Lu Z 2008 Removal of phospho-head groups of membrane lipids immobilizes voltage sensors of K+ channels; Nature (London) 451 826–829

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Sen Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, YS., Chen, KC. & Chang, LS. Functional role of EF-hands 3 and 4 in membrane-binding of KChIP1. J Biosci 34, 203–211 (2009). https://doi.org/10.1007/s12038-009-0024-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-009-0024-4

Keywords

Navigation