Skip to main content

Branch-point stoichiometry can generate weak links in metabolism: the case of glycine biosynthesis

Abstract

Although the metabolic network permits conversion between almost any pair of metabolites, this versatility fails at certain sites because of chemical constraints (kinetic, thermodynamic and stoichiometric) that seriously restrict particular conversions. We call these sites weak links in metabolism, as they can interfere harmfully with management of matter and energy if the network as a whole does not include adequate safeguards. A critical weak link is created in glycine biosynthesis by the stoichiometry of the reaction catalyzed by glycine hydroxymethyltransferase (EC 2.1.2.1), which converts serine into glycine plus one C1 unit: this produces an absolute dependence of the glycine production flux on the utilization of C1 units for other metabolic pathways that do not work coordinately with glycine use. It may not be possible, therefore, to ensure that glycine is always synthesized in sufficient quantities to meet optimal metabolic requirements.

This is a preview of subscription content, access via your institution.

References

  1. Ackernecht E H 1953 Paleopathology; in Anthropology today: an Encyclopedic inventory (ed.) A L Kroeber (Chicago: University of Chicago Press)

    Google Scholar 

  2. Baker D H 2005 Comparative nutrition and metabolism: explication of open questions with emphasis on protein and amino acids; Proc. Natl. Acad. Sci. USA 102 17897–17902

    CAS  Article  Google Scholar 

  3. Bienkowski R S, Baum B J and Crystal R G 1978 Fibroblasts degrade newly synthesized collagen within the cell before secretion; Nature (London) 276 413–416

    CAS  Article  Google Scholar 

  4. Bonard E C 1987 The rhinoceros horn syndrome (an unusual form of neuropathy and arthrosis of the feet); Rev. Med. Suisse Romande 107 855–856

    CAS  PubMed  Google Scholar 

  5. Boogerd F, Bruggeman F J, Hofmeyr J H S and Westerhoff H V 2007 Systems biology: philosophical foundations (New York: Wiley)

    Google Scholar 

  6. Case, G L and Benevenga, N J 1977 Significance of formate as an intermediate in the oxidation of the methionine, S-methyl-Lcysteine and sarcosine methyl carbons to CO2 in the rat; J. Nutr. 107 1665–1676

    CAS  Article  Google Scholar 

  7. Christensen H N 1982 Interorgan amino acid nutrition; Physiol. Rev. 62 1193-1233

    CAS  Article  Google Scholar 

  8. Christensen K E and MacKenzie R E 2006 Mitochondrial onecarbon metabolism is adapted to the specific needs of yeast, plants and mammals; Bioessays 28 595–605

    CAS  Article  Google Scholar 

  9. Cornish-Bowden A 2004 The pursuit of perfection (Oxford: Oxford University Press)

    Google Scholar 

  10. Cornish-Bowden A 2006 Putting the systems back into systems biology; Persp. Biol. Med. 49 475–489

    CAS  Article  Google Scholar 

  11. Cornish-Bowden A and Cardenas M L 2001 Information transfer in metabolic pathways: effects of irreversible steps in computer models; Eur. J. Biochem. 268 6616–6624

    CAS  Article  Google Scholar 

  12. Daran-Lapujade P, Rossell S, van Gulik W M, Luttik M A H, de Groot M J L, Slijper M, Heck A J R, Daran J M, de Winde J H, Westerhoff H V, Pronk J T and Bakker B M 2007 The fluxes through glycolytic enzymesin Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels; Proc. Natl. Acad. Sci. USA 104 15753–15758

    CAS  Article  Google Scholar 

  13. de Koning T J, Duran M, Dorland L, Gooskens R, Van Schaftingen E, Jaeken J, Blau N, Berger R and Poll-The B T 1998 Beneficial effects of L-serine and glycine in the management of seizures in 3-phosphoglycerate dehydrogenase deficiency; Ann. Neurol. 44 261–265

    Article  Google Scholar 

  14. de Koning T J, Snell K, Duran M, Berger R, Poll-The B T and Surtees R 2003 L-serine in disease and development; Biochem. J. 371 653–661

    Article  Google Scholar 

  15. Edwards G E, Furbank R T, Hatch M D and Osmond C B 2001 What does it take to be C4? Lessons from the evolution of C4 photosynthesis; Plant Physiol. 125 4646

    Article  Google Scholar 

  16. Fell D 1997 Understanding the control of metabolism (London: Portland Press)

    Google Scholar 

  17. Gibson N R, Jahoor F, Ware L and Jackson A A 2002 Endo-genous glycine and tyrosine production is maintained in adults consuming a marginal-protein diet; Am. J. Clin. Nutr. 75 511–518

    CAS  Article  Google Scholar 

  18. Greer M, Greer J K and Gillingham G 1977 Osteoarthritis in selected wild animals; Proc. Okla. Acad. Sci. 57 39–44

    Google Scholar 

  19. Heinrich R, Montero F, Klipp E, Waddell T G and Melendez-Hevia E 1997 Theoretical approaches to the evolutionary optimization of glycolysis: thermodynamic and kinetic constraints; Eur. J. Biochem. 243 191–201

    CAS  Article  Google Scholar 

  20. Hofmeyr J H S and Cornish-Bowden A 2000 Regulating the cellular economy of supply and demand; FEBS Lett. 476 47–51

    CAS  Article  Google Scholar 

  21. Jacob F 1977 Evolution and tinkering; Science 196 1161–1166

    CAS  Article  Google Scholar 

  22. Jackson A A 1991 The glycine story; Eur. J. Clin. Nutr. 45 59–65

    CAS  PubMed  Google Scholar 

  23. Jackson A A, Persaud C, Meakins T S and Bundy R 1996 Urinary excretion of 5-L-oxoproline (pyroglutamic acid) is increased in normal adults consuming vegetarian or low protein diets; J. Nutr. 126 2813–2822

    CAS  PubMed  Google Scholar 

  24. Jurmain R 2000 Degenerative joint disease in African great apes: an evolutionary perspective; J. Hum. Evol. 39 185–203

    CAS  Article  Google Scholar 

  25. Kacser H 1987 On parts and wholes in metabolism; in The organization of cell metabolism (ed.) G R Welch and J S Clegg (New York: Plenum Press) pp 327–337

    Google Scholar 

  26. Lamers Y, Williamson J, Gilbert L R, Stacpoole P W and Gregory J F 3rd 2007 Glycine turnover and decarboxylation rate quanti_ed in healthy men and women using primed, constant infusions of [1,2-13C2]glycine and [2H3]leucine; J. Nutr. 137 2647–2652

    CAS  Article  Google Scholar 

  27. Lewis R M, Godfrey K M, Jackson A A and Cameron I T, Hanson, M A 2005 Low serine hydroxymethyltransferase activity in the human placenta has important implicat-ions for fetal glycine supply; J. Clin. Endocrinol. Metab. 90 1594–1598

    CAS  Article  Google Scholar 

  28. Matilla B, Mauriz J L, Culebras J M, Gonzalez-Gallego J and Gonzalez P 2002 Glycine: a cell-protecting anti-oxidant nutrient; Nutr. Hosp. 17 2–9

    CAS  PubMed  Google Scholar 

  29. Meléndez-Hevia E 1993 La Evolución del Metabolismo: hacia la Simplicidad (Madrid: Eudema)

    Google Scholar 

  30. Meléndez-Hevia E, Waddell T G and Cascante M 1996 The puzzle of the Krebs citric acid cycle: assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways during evolution; J. Mol. Evol. 43 293–303

    Article  Google Scholar 

  31. Morange M 2008 What history tells us XV. Cyril Norman Hinshalwood (1897–1967) — A chemical dynamic vision of the organic world; J. Biosci. 34 669–672

    Article  Google Scholar 

  32. Nuño J C, Sánchez-Valdenebro I, Pérez-Iratxeta C, Melendez-Hevia E and Montero F 1997 Network organization of cell metabolism: monosaccharide interconversion; Biochem. J. 324 103–111

    Article  Google Scholar 

  33. Pérez P J and Martinez I 1989 Evidence of temporomandibular arthrosis in the Middle Pleistocene human fossils from Atapuerca/Ibeas (Spain); J. Paleopathol. 3 15–18

    Google Scholar 

  34. Persaud C, Forrester T and Jackson A A 1996 Urinary excretion of 5-L-oxoproline (pyroglutamic acid) is increased during recovery from severe childhood malnutrition and responds to supplemental glycine; J. Nutr. 126 2823–2830

    CAS  PubMed  Google Scholar 

  35. Rothschild B M 1987 Diffuse idiopathic skeletal hyperostosis as reected in the paleontologic record: dinosaurs and early mammals; Semin. Arthritis Rheum. 17 119–125

    CAS  Article  Google Scholar 

  36. Rothschild B M and Martin L 1993 Paleopathology: Disease in the fossil record (New York: CRC Press)

    Google Scholar 

  37. Schirch V and Szebenyi D M 2005 Serine hydroxymethyltransferase revisited; Curr. Opin. Chem. Biol. 9 482–487

    CAS  Article  Google Scholar 

  38. Small J R and Kacser H 1993 Responses of metabolic system to large changes in enzyme activities and effectors. 2. The linear treatment of branched pathways and metabolite concentrations: assessment of the general non-linear case; Eur. J. Biochem. 213 625–640

    CAS  Article  Google Scholar 

  39. Straus W and Cave A J E 1957 Pathology and the posture of Neanderthal man; Q. Rev. Biol. 32 348–363

    Article  Google Scholar 

  40. Wallach J D 1967 Degenerative arthritis in a black rhinoceros; J. Am. Vet. Med. Assoc. 151 887–889

    CAS  PubMed  Google Scholar 

  41. Weissengruber G E, Fuss F K, Egger G, Stanek G and Hittmair K M, Forstenpointner, G 2006 The elephant knee joint: morphological and biomechanical considerations; J. Anat. 208 59–72

    CAS  Article  Google Scholar 

  42. Xue H H, Sakaguchi T, Fujie M, Ogawa H and Ichiyama A 1999 Flux of the L-serine metabolism in rabbit, human, and dog livers Substantial contributions of both mitochondrial and peroxisomal serine:pyruvate/alanine:glyoxylate aminotransferase; J. Biol. Chem. 274 16028–16033

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Enrique Meléndez-Hevia.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meléndez-Hevia, E., de Paz-Lugo, P. Branch-point stoichiometry can generate weak links in metabolism: the case of glycine biosynthesis. J. Biosci. 33, 771–780 (2008). https://doi.org/10.1007/s12038-008-0097-5

Download citation

Keywords

  • Essential amino acids
  • glycine
  • metabolic constraints
  • metabolism
  • network
  • system biology