Journal of Biosciences

, Volume 33, Issue 2, pp 279–287

Nano-composition of riboflavin-nafion functional film and its application in biosensing

  • S. Rezaei-Zarchi
  • A. A. Saboury
  • A. Javed
  • A. Barzegar
  • S. Ahmadian
  • A. Bayandori-Moghaddam
Article

Abstract

A novel nafion-riboflavin membrane was constructed and characterized by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible spectroscopy and cyclic voltammetric techniques. The estimated average diameter of the designed nanoparticles was about 60 nm. The functional membrane showed a quasi-reversible electrochemical behaviour with a formal potential of −562 ± 5 mV (vs Ag/AgCl) on the gold electrode. Some electrochemical parameters were estimated, indicating that the system has good and stable electron transfer properties. Moreover, horseradish peroxidase (HRP) was immobilized on the riboflavin-nafion functional membrane. The electrochemical behaviour of HRP was quasi-reversible with a formal potential of 80 ± 5 mV (vs Ag/AgCl). The HRP in the film exhibited good catalytic activity towards the reduction of H2O2. It shows a linear dependence of its cathodic peak current on the concentration of H2O2, ranging from 10 to 300 µM.

Keywords

Biosensor functional membrane horseradish peroxidase nanoparticles 

Abbreviations used

HRP

horseradish peroxidase

nafion

nafion perfluorosulphonated ion-exchange resin

SEM

scanning electron microscopy

TEM

transmission electron microscopy

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrieux C P, Audebert P, Divisia-Blohorn B, Aldebert P and Michalak F 1990 Electrochemistry in hydrophobic nafion gels; J. Electroanal. Chem. 296 117–139CrossRefGoogle Scholar
  2. Arvand M, Sohrabnezhad S, Mousavi M F, Shamsipur M and Zanjanchi M A 2003 Electrochemical study of methylene blue incorporated into mordenite type zeolite and its application for amperometric determination of ascorbic acid in real samples; Anal. Chim. Acta 491 193–201CrossRefGoogle Scholar
  3. Cai X, Rivas G, Farias P A M, Shiraishi H, Wang J and Palecek E 1996 Evaluation of different carbon electrodes for stripping analysis of nucleic acids; Electroanalysis 8 753–758CrossRefGoogle Scholar
  4. Chaubey A and Malhotra B D 2002 Mediated biosensors; Biosens. Bioelectron. 17 441–456PubMedCrossRefGoogle Scholar
  5. Chen H Y, Ju H X and Xun Y G 1994 Methylene blue/perfluorosulfonated ionomer modified microcylinder carbon fiber electrode and its application for the determination of hemoglobin; Anal. Chem. 66 4538–4542CrossRefGoogle Scholar
  6. Clarke M J, Harrison K L, Johnston K P and Howdle S M 1997 Water in carbon dioxide microemulsions: a spectroscopic study of a new environment for aqueous chemistry; J. Am. Chem. Soc. 119 6399–6406CrossRefGoogle Scholar
  7. Gao Y, Li N, Zheng L, Zhao X, Zhang S, Han B and Ganzuo W H 2006 A cyclic voltammetric technique for the detection of micro-regions of bmimPF6/Tween 20/H2O microemulsions and their performance characterization by UV-vis spectroscopy; Green Chem. 8 43–49CrossRefGoogle Scholar
  8. Gogol E V, Evtugyn G A, Marty J L, Budnikov H C and Winter V G 2000 Amperometric biosensors on nafion coated screen-printed electrodes for the determination of cholinesterase inhibitors; Talanta 53 379–389CrossRefGoogle Scholar
  9. Gorton L, Karan H I, Hale P D, Inagaki T, Okamoto Y and Skothein T A 1991 An amperometric glucose electrode based on carbon paste, chemically modified with glucose dehydrogenase, nicotinamide adenine dinucleotide, and a phenoxazine mediator, coated with a poly(ester sulfonic acid) cation exchanger; Anal. Chim. Acta 249 43–54CrossRefGoogle Scholar
  10. Honeychurch J and Rechnitz G A 1998 Voltammetry of adsorbed molecules. Part 2: irreversible redox systems; Electroanalysis 10 453–457CrossRefGoogle Scholar
  11. Hong J, Ghourchian H, Rezaei-Zarchi S, Moosavi-Movahedi A A, Ahmadian S and Saboury A A 2007 Nafion-methylene blue functional membrane and its application in chemical-and biosensing; Anal. Lett. 40 483–496CrossRefGoogle Scholar
  12. John S A and Ramaraj R 2004 Microenvironment effects on the electrochemical and photoelectrochemical properties of thionine loaded nafion films; J. Electroanal. Chem. 561 119–126CrossRefGoogle Scholar
  13. Karyakin A A, Puganova E A, Budashov I A, Kurochkin I N, Karyakina E E, Levchenko V A, Matveyenko V N and Varfolomeyev S D 2004 Prussian blue based nanoelectrode arrays for H2O2 detection; Anal. Chem. 76 474–478PubMedCrossRefGoogle Scholar
  14. Khoo S B and Chen F 2002 Studies of sol-gel ceramic film incorporating methylene blue on glassycarbon: an electrocatalytic system for the simultaneous determination of ascorbic and uric acids; Anal. Chem. 74 5734–5741PubMedCrossRefGoogle Scholar
  15. Kong Y T, Boopathi M and Shim Y B 2003 Direct electrochemistry of horseradish peroxidase bonded on a conducting polymer modified glassy carbon electrode; Biosens. Bioelectron. 19 227–232PubMedCrossRefGoogle Scholar
  16. Kubota L T, Gushikem Y, Perez J and Tanaka A A 1995 Electrochemical properties of iron phthalocyanine immobilized on titanium(IV) oxide coated on silica gel surface; Langmuir 11 1009–1015CrossRefGoogle Scholar
  17. Kurzawa C, Hengstenberg A and Schuhmann W 2002 Immobilization method for the preparation of biosensors based on pH shift-induced deposition of biomolecule-containing polymer films; Anal. Chem. 74 355–361PubMedCrossRefGoogle Scholar
  18. Laviron E 1982 Voltammetric methods for the study of adsorbed species; in Electroanalytical chemistry (ed.) A J Bard (New York: Dekker) p. 53Google Scholar
  19. Liu H Y and Deng J Q 1995 An amperometric lactate sensor employing tetrathiafulvalene in nafion film as electron shuttle; Electrochim. Acta 40 1845–1849CrossRefGoogle Scholar
  20. McNeil C J, Greenough K R, Weeks P A and Cooper J M 1992 Electrochemical sensors for direct reagentless measurement of superoxide production by human neutrophils; Free Radical Res. Commun. 17 399–406CrossRefGoogle Scholar
  21. Miura N, Kato H, Yamazoe N, Seiyama T and Kagaku D 1984 Amperometric gas sensor using solid-state proton conductor sensitive to hydrogen in air at room temperature; Chem. Lett. 11 1905–1909CrossRefGoogle Scholar
  22. Munteanu F D, Kubota L T and Gorton L 2001 Effect of pH on the catalytic electro oxidation of NADH using different two-electron mediators immobilised on zirconium phosphate; J. Electroanal. Chem. 509 2–10CrossRefGoogle Scholar
  23. Murray R W 1984 Chemically modified electrodes; in Electroanalytical chemistry (ed.) A J Bard (New York: Dekker) p. 191Google Scholar
  24. Ogino Y, Takagi K, Kano K and Iketa T 1995 Reaction between diaphorase and quinone compounds in bioelectrocatalytic redox reaction of NADH and NAD(+); J. Electroanal. Chem. 396 517–524CrossRefGoogle Scholar
  25. Pessoa C A, Gushikem Y, Kubota L T and Gorton L 1997 Preliminary electrochemical study of phenothiazines and phenoxazines immobilized on zirconium phosphate; J. Electroanal. Chem. 431 23–27CrossRefGoogle Scholar
  26. Richard P B and Erno L 1994 Recomendations for nomenclature of ion-selective electrodes; IUPAC 66 2527–2536Google Scholar
  27. Rolison D R 1990 Zeolite-modified electrodes and electrodemodified zeolites; Chem. Rev. 90 867–878CrossRefGoogle Scholar
  28. Scheller F W, Bistolas N, Liu S, Jänchen M, Katterle M and Wollenberger U 2005 Thirty years of haemoglobin electrochemistry; Adv. Coll. Interf. Sci. 116 111–120CrossRefGoogle Scholar
  29. Tian Y, Ariga T, Takashima N and Okajima T 2004 Self-assembled monolayer suitable for electron transfer promotion of copper, zinc-superoxide dismutase; Electrochem. Comm. 6 609–614CrossRefGoogle Scholar
  30. Yamashita M, Rosatto S S and Kubota L T 2002 Electrochemical comparative study of riboflavin, FMN and FAD immobilized on the silica gel modified with zirconium oxide; J. Braz. Chem. Soc. 13 635–641CrossRefGoogle Scholar
  31. Yao H, Li N, Xu S, Xu J Z, Zhu J J and Chen H Y 2005 Electrochemical study of a new methylene blue/silicon oxide nanocomposition mediator and its application for stable biosensor of hydrogen peroxide; Biosens. Bioelectron. 21 372–377PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2008

Authors and Affiliations

  • S. Rezaei-Zarchi
    • 1
    • 2
  • A. A. Saboury
    • 1
  • A. Javed
    • 3
  • A. Barzegar
    • 1
  • S. Ahmadian
    • 1
  • A. Bayandori-Moghaddam
    • 4
  1. 1.Institute of Biochemistry and BiophysicsUniversity of TehranTehranIran
  2. 2.Department of BiologyPayam-e-Noor UniversityYazdIran
  3. 3.Department of BiochemistryUniversity of AgricultureFaisalabadPakistan
  4. 4.Department of Chemistry, Faculty of SciencesUniversity of TehranTehranIran

Personalised recommendations