Skip to main content
Log in

Exploring conformational space using a mean field technique with MOLS sampling

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The computational identification of all the low energy structures of a peptide given only its sequence is not an easy task even for small peptides, due to the multiple-minima problem and combinatorial explosion. We have developed an algorithm, called the MOLS technique, that addresses this problem, and have applied it to a number of different aspects of the study of peptide and protein structure. Conformational studies of oligopeptides, including loop sequences in proteins have been carried out using this technique. In general the calculations identified all the folds determined by previous studies, and in addition picked up other energetically favorable structures. The method was also used to map the energy surface of the peptides. In another application, we have combined the MOLS technique, using it to generate a library of low energy structures of an oligopeptide, with a genetic algorithm to predict protein structures. The method has also been applied to explore the conformational space of loops in protein structures. Further, it has been applied to the problem of docking a ligand in its receptor site, with encouraging results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LS:

Latin square

MFT:

mean field technique

MOLS:

mutually orthogonal Latin squares

PES:

potential energy surface

References

  • Anfinsen C B 1973 Principles that Govern the Folding of Protein Chains; Science 181 223–230

    Article  PubMed  CAS  Google Scholar 

  • Anfinsen C B, Robert R R, Warren I C, Juanita P and William R C 1954 Studies on the Gross Structure, Cross-Linkages, and Terminal Sequences in Ribonuclease; J. Biol. Chem. 207 201–210

    PubMed  CAS  Google Scholar 

  • Arunachalam J, Kanagasabai K and Gautham N 2006 Protein structure prediction using mutually orthogonal Latin squares and a genetic algorithm; Biochem. Biophys. Res. Commun. 342 424–433

    Article  PubMed  CAS  Google Scholar 

  • Betancourt M R and Skolnick J 2001 Finding the needle in a haystack: deducing native folds from ambiguous ab initio protein structure predictions; J. Comp. Chem. 22 339–353

    Article  CAS  Google Scholar 

  • Böhm G 1996 New approaches in molecular structure prediction; Biophys. Chem. 59 1–32

    Article  PubMed  Google Scholar 

  • Bowie J U and Eisenberg D 1994 An evolutionary approach to folding small a-helical proteins that uses sequence information and an empirical guiding fitness function; Proc. Natl. Acad. Sci. USA 91 4436–4440

    Article  PubMed  CAS  Google Scholar 

  • Brooks B R, Bruccoleri R E, Olafson B D, States D J, Swaminathan S and Karplus M 1983 CHARMM: A program for macromolecular energy, minimization, and dynamics calculations; J. Comput. Chem. 4 187–217

    Article  CAS  Google Scholar 

  • Bujnicki J M 2006 Protein-Structure Prediction by Recombination of Fragments; Chem. Biol. Chem. 7 19–27

    CAS  Google Scholar 

  • Chung S Y and Subbiah S 1996 Pac. Symp. Biocomput. (Hawaii) 126–141

  • Clark M, Cramer III R D and van Opdenhosch N 1989 Validation of the General Purpose Tripose 5.2 Force Field; J. Comp. Chem. 10 982–1012

    Article  CAS  Google Scholar 

  • Crivelli S, Eskow E, Bader B, Lamberti V, Byrd R, Schnabel R and Head G T 2002 A physical approach to protein structure prediction; Biophys. J. 82 36–49

    PubMed  CAS  Google Scholar 

  • Daisuke K, Hui L, Andrzej K and Jeffrey S 2001 TOUCHSTONE: An ab initio protein structure prediction method that uses threading-based tertiary restraints; Proc. Natl. Acad. Sci. USA 98 10125–10130

    Article  Google Scholar 

  • Damm W A, Frontera J, Tirado-Rives and Jorgensen W L 1997 OPLS All-Atom Force Field for Carbohydrates; J. Comp. Chem. 18 1955–1970

    Article  CAS  Google Scholar 

  • Dandekar T and Argos P 1994 Folding the main chain of small proteins with the genetic algorithm; J. Mol. Biol. 236 844–861

    Article  PubMed  CAS  Google Scholar 

  • Dandekar T and Argos P 1996 Identifying the tertiary fold of small proteins with different topologies from sequence and secondary structure using the genetic algorithm and extended criteria for strand regions; J. Mol. Biol. 256 645–660

    Article  PubMed  CAS  Google Scholar 

  • Deane M C and Blundell T L 2000 A novel exhaustive search algorithm for predicting the conformation of polypeptide segments in proteins; Prot. Struct. Funct. Genet. 40 135–144

    Article  CAS  Google Scholar 

  • DePristo M A, de Bakker P I, Lovell S C and Blundell T L 2003 Ab initio construction of polypeptide fragments: efficient generation of accurate, representative ensembles; Prot. Struct. Funct. Genet. 51 41–55

    Article  CAS  Google Scholar 

  • Dill K A and Chan H S 1997 From Levinthal to pathways to funnels; Nat. Struct. Biol. 4 10–19

    Article  PubMed  CAS  Google Scholar 

  • Duan Y and Kollman P A 2001 Computational protein folding: From lattice to all-atom; IBM Systems J. 40 297–309

    Article  Google Scholar 

  • Efimov A V 1993 Patterns of loop regions in proteins; Curr. Opin. Struct. Biol. 3 379–384

    Article  CAS  Google Scholar 

  • Eisenhaber F, Persson B and Argos P 1995 Protein structure prediction: Recognition of primary, secondary, and tertiary structural features from amino acid sequence; Crit. Rev. Biochem. Mol. Biol. 30 1–94

    Article  PubMed  CAS  Google Scholar 

  • Finney D J 1955 Randomized blocks and Latin squares; in Experimental design and its statistical basis (London: Cambridge University Press) pp 45–67

    Google Scholar 

  • Fiser A, Gian D K R and Sali R 2000 Modeling of loops in protein structures. Protein Sci. 9 1753–1773

    PubMed  CAS  Google Scholar 

  • Fisher R A 1960 The Latin square; in The design of experiments (London: Oliver and Boyd pp 70–92

    Google Scholar 

  • Floudas C A, Klepeis J L and Pardalos, P M 1999 Global optimization approaches in protein folding and peptide docking. In DIMACS Series in discrete mathematics and theoretical computer science (eds) M Farach-Colton et al (New Jersey: American Mathematical Society) vol 47, pp 141–171

    Google Scholar 

  • Gehlhaar D K, Verkhivker G M, Rejto P A, Sherman C J, Fogel D B, Fogel L J and Freer S T 1995 Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming; Chem. Biol. 2 317–324

    Article  PubMed  CAS  Google Scholar 

  • Ginalski K, Grishin N V, Godzik A and Rychlewski L 2005 Practical lessons from protein structure prediction; Nuceic Acids Res. 33 1874–1891

    Article  CAS  Google Scholar 

  • Goldberg D E 1999 Genetic algorithms, in search, optimization and machine learning (Singapore: Pearson Education)

    Google Scholar 

  • Griffin J F, Langs D A, Smith G D, Blundell T L, Tickle I J and Bedarkar S 1986 The crystal structures of [Met5]enkephalin and a third form of [Leu5]enkephalin: Observations of a novel pleated b-sheet; Proc. Natl. Acad. Sci. USA 83 3272–3276

    Article  PubMed  CAS  Google Scholar 

  • Hansmann U H E, Okamoto Y, and Onuchic J N 1999 The folding funnel landscape for the peptide Met-enkephalin; Prot. Struct. Funct. Genet. 34 472–483

    Article  CAS  Google Scholar 

  • Hardin C, Pogorelov T V and Luthey-Schulten Z 2002 Ab initio protein structure prediction; Curr. Opin. Struct. Biol. 12 176–81

    Article  PubMed  CAS  Google Scholar 

  • Howard A E and Kollman P A 1988 An analysis of current methodologies for conformational searching of complex molecules; J. Med. Chem. 31 1669–1675

    Article  PubMed  CAS  Google Scholar 

  • Isogai Y, Nemethy G, and Scheraga H A 1977 Enkephalin: conformational analysis by means of empirical energy calculations; Proc. Natl. Acad. Sci. USA 74 414–418

    Article  PubMed  CAS  Google Scholar 

  • Kanagasabai V, Arunachalam J, Arun Prasad P and Gautham N 2007 Exploring the Conformational Space of Protein Loops Using A Mean Field Technique With MOLS Sampling; Prot. Struct. Funct. Bioinfo. 67 (in press)

  • Klepeis J L and Floudas C A 2003 Ab initio Tertiary Structure Prediction of Proteins; J. Glob. Optim. 25 113–140

    Article  Google Scholar 

  • Koehl P and Delarue M 1994 Application of a self-consistent mean field theory to predict protein side-chains conformation and estimate their conformational entropy; J. Mol. Biol. 239 249–75

    Article  PubMed  CAS  Google Scholar 

  • Koehl P and Delarue M 1996 Mean-field minimization methods for biological macromolecules; Curr. Opin. Struct. Biol. 6 222–226

    Article  PubMed  CAS  Google Scholar 

  • Leach A R 1991 A survey of methods for searching the conformational space of small and medium-sized molecules; in Reviews in computational chemistry (eds) K B Lipkowitz and D B Boyd (New York: VCH Publishers) vol 2, pp 1–55

    Chapter  Google Scholar 

  • Leszczynski J F and Rose G D 1986 Loops in globular proteins: a novel category of secondary structure; Science 234 849–855

    Article  PubMed  CAS  Google Scholar 

  • Levy Y and Becker O M 2001 Energy landscapes of conformationally constrained peptides; J. Chem. Phys 14 993–1009

    Article  Google Scholar 

  • Li Z and Scheraga H A 1987 Monte Carlo-minimization approach to the multiple-minima problem in protein folding; Proc. Natl. Acad. Sci. USA 84 6611–6615

    Article  PubMed  CAS  Google Scholar 

  • Lii, J H and Allinger N L 1991 The MM3 Force Field for Amides, Polypeptides and Proteins; J. Comp. Chem. 12 186–199

    Article  CAS  Google Scholar 

  • Montgomery D C 2000 Randomized blocks, Latin squares, and related designs; in Design and analysis of experiments (New York: John Wiley) pp 126–169

    Google Scholar 

  • Moult J, Fidelis K, Zemla A and Hubbard T 2003 Critical assessment of methods of protein structure prediction (CASP)-round V; Proteins (Suppl.) 53 334–339

    CAS  Google Scholar 

  • Natasja B and Kuntz I D 2003 Molecular Recognition and Docking Algorithms; Annu. Rev. Biophys. Biomol. Struct. 32 335–373

    Article  CAS  Google Scholar 

  • Nemethy G, Gibson K D, Palmer K A, Yoon C N, Paterlini G, Zagari A, Rumsey S and Scheraga H A 1992 Energy parameters in polypeptides. 10. Improved geometric parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides; J. Phys. Chem. 96 6472–6484

    Article  CAS  Google Scholar 

  • Neumaier A 1997 Molecular modeling of proteins and mathematical prediction of protein structure; SIAM Rev. 39 407–460

    Article  Google Scholar 

  • Onuchic J, Luthey S A, and Wolynes P G 1997 Theory of protein folding: the energy landscape perspective; Annu. Rev. Phys. Chem. 48 545–600

    Article  PubMed  CAS  Google Scholar 

  • Plotkin S S and Onuchic J N 2002 Understanding protein folding with energy landscape theory Part II: Quantitative aspects; Q. Rev. Biophys. 35 205–286

    Article  PubMed  CAS  Google Scholar 

  • Richard B and David B 2001 AB INITIO PROTEIN STRUCTURE PREDICTION: Progress and Prospects; Annu. Rev. Biophys. Biomol. Struct. 30 173–189

    Article  Google Scholar 

  • Ring C S, Kneller D G, Langridge R and Cohen F E 1992 Taxonomy and conformational analysis of loops in proteins; J. Mol. Biol. 224 685–699

    Article  PubMed  CAS  Google Scholar 

  • Rost B and O’Donoghue S 1997 Sisyphus and protein structure prediction; Bioinformatics 13 345–356

    Article  CAS  Google Scholar 

  • Rost B and Sander C 1994 Structure prediction of proteins — where are we now?; Curr. Opin. Biotech. 5 372–380

    Article  PubMed  CAS  Google Scholar 

  • Schulze K S 2000 Genetic algorithm and protein folding; in Protein structure prediction — methods and protocols (ed.) D M Webster (New Jersey: Humana press) pp 175–222

    Chapter  Google Scholar 

  • Sudarsanam S, DuBose R F, March C J and Srinivasan S 1995 Modelling protein loops using a ϕ i+1,Φ i dimer database; Protein Sci. 4 1412–1420

    PubMed  CAS  Google Scholar 

  • Sun S 1995 A genetic algorithm that seeks native states of proteins; Biophys. J. 69 340–355

    PubMed  CAS  Google Scholar 

  • Takada S 2001 Protein Folding Simulation With Solvent-Induced Force Field: Folding Pathway Ensemble of Three-Helix-Bundle Proteins; Prot. Struct. Funct. Genet. 42 85–98

    Article  CAS  Google Scholar 

  • Taylor R D, Jewsbury P J and Essex J W 2002 A review of protein-small molecule docking methods; J. Comput. Aided Mol. Des. 16 151–166

    Article  PubMed  CAS  Google Scholar 

  • Taylor R D, Jewsbury P J, Essex W J 2003 FDS: Flexible Ligand and Receptor Docking with a Continuum Solvent Model and Soft-Core Energy Function; J. Comput. Chem. 24 1637–1656

    Article  PubMed  CAS  Google Scholar 

  • Unger R and Moult J 1993 Genetic algorithms for protein folding simulations; J. Mol. Biol. 231 75–81

    Article  PubMed  CAS  Google Scholar 

  • Van Vlijmen T W H and Karplus M 1997 PDB based protein loop prediction: parameters for election and methods for optimization; J. Mol. Biol. 267 975–1001

    Article  PubMed  Google Scholar 

  • Vásquez M, Némethy G and Scheraga H A 1994 Conformational energy calculations on polypeptides and protein; Chem. Rev. 94 2183–2239

    Article  Google Scholar 

  • Vengadesan K and Gautham N 2003 Enhanced sampling of the molecular potential energy surface using mutually orthogonal Latin squares: Application to peptide structures; Biophys. J. 84 2897–2906

    Article  PubMed  CAS  Google Scholar 

  • Vengadesan K and Gautham N 2004a Conformational studies on enkephalins using the MOLS technique; Biopolymers 74 476–494

    Article  PubMed  CAS  Google Scholar 

  • Vengadesan K and Gautham N 2004b The energy landscape of Metenkephalin and Leu-enkephalin drawn using mutually orthogonal Latin squares sampling; J. Phys. Chem. B 108 11196–11205

    Article  CAS  Google Scholar 

  • Wales D J, Doye J P K, Miller M A, Mortenson P N, and Walsh T A 2000 Energy landscapes: From clusters to biomolecules; Adv. Chem. Phys. 115 1–111

    Article  Google Scholar 

  • Weiner S J, Kollman P A, Nguyen D T and Case D A 1986 An all atom force field for simulations of proteins and nucleic acids; J. Comput. Chem. 7 230–252

    Article  CAS  Google Scholar 

  • Wojcik J, Mornon J and Chomilier J 1999 New efficient statistical sequence-dependent structure prediction of short to medium sized protein loops based on an exhaustive loop classification; J. Mol. Biol. 289 1469–1490

    Article  PubMed  CAS  Google Scholar 

  • Youxing Q, Jun-tao G, Victor O and Ying X 2004 Protein structure prediction using sparse dipolar coupling data; Nuceic Acids Res. 32 2551–2561

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Gautham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, P.A., Kanagasabai, V., Arunachalam, J. et al. Exploring conformational space using a mean field technique with MOLS sampling. J Biosci 32 (Suppl 1), 909–920 (2007). https://doi.org/10.1007/s12038-007-0091-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-007-0091-3

Keywords

Navigation