Skip to main content
Log in

Mechanism of DNA-binding loss upon single-point mutation in p53

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Over 50% of all human cancers involve p53 mutations, which occur mostly in the sequence-specific DNA-binding central domain (p53c), yielding little/non-detectable affinity to the DNA consensus site. Despite our current understanding of protein-DNA recognition, the mechanism(s) underlying the loss in protein-DNA binding affinity/specificity upon single-point mutation are not well understood. Our goal is to identify the common factors governing the DNA-binding loss of p53c upon substitution of Arg 273 to His or Cys, which are abundant in human tumours. By computing the free energies of wild-type and mutant p53c binding to DNA and decomposing them into contributions from individual residues, the DNA-binding loss upon charge/noncharge-conserving mutation of Arg 273 was attributed not only to the loss of DNA phosphate contacts, but also to longer-range structural changes caused by the loss of the Asp 281 salt-bridge. The results herein and in previous works suggest that Asp 281 plays a critical role in the sequence-specific DNA-binding function of p53c by (i) orienting Arg 273 and Arg 280 in an optimal position to interact with the phosphate and base groups of the consensus DNA, respectively, and (ii) helping to maintain the proper DNA-binding protein conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

aa:

amino acid

MD:

molecular dynamic

RMSD:

root-mean-square-deviations

vdW:

van der Walls

References

  • Abarzua, P, LoSardo J E, Gubler M L, Lu Y-A, Felix A and Neri A 1996 Restoration of the transcription activation function to mutant p53 in human cancer cells; Oncogene 13 2477–2482

    PubMed  CAS  Google Scholar 

  • Babu C S and Lim C 2006 Empirical force fields for biologically active divalent metal cation in water; J. Phys. Chem. A 110 691–699

    Article  PubMed  CAS  Google Scholar 

  • Berman H M, Olson W K, Beveridge D L, Westbrook J, Gelbin A, Demeny T, Hsieh S H, Srinivasan A R and Schneider B 1992 The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids; Biophys. J. 63 751–759

    Article  PubMed  CAS  Google Scholar 

  • Bower M J, Cohen F E and Dunbrack R L 1997 Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: A new homology modeling tool; J. Mol. Biol. 267 1268–1282

    Article  PubMed  CAS  Google Scholar 

  • Brooks B R, Bruccoleri R E, Olafson B D, States D J, Swaminathan S and Karplus M 1983 CHARMm: A program for macromolecular energy, minimization, and dynamics calculations; J. Comput. Chem. 4 187–217

    Article  CAS  Google Scholar 

  • Canadillas J M P, Tidow H, Freund, S M V, Rutherford T J, Ang H C and Fersht A R 2006 Solution structure of p53 core domain: Structural basis for its instability; Proc. Natl. Acad. Sci. USA 103 2109–2114

    Article  PubMed  CAS  Google Scholar 

  • Cho Y, Gorina S, Jeffrey P D and Pavletich N P 1994 Crystal structure of a p53 tumor suppressor-DNA complex: Understanding tumorigenic mutations.; Science 265 346–355

    Article  PubMed  CAS  Google Scholar 

  • DeLano W L 2004 The PyMOL molecular graphics system (DeLano Scientific)

  • Dunbrack R L J and Karplus M 1993 Backbone-dependent rotamer library for proteins. Application to side-chain prediction; J. Mol. Biol. 230 543–574

    Article  PubMed  CAS  Google Scholar 

  • El-Deiry A A, Kern S E, Pietenpol J A, Kinzler K W and Vogelstein B 1992 Definition of a consensus binding site for p53; Nature Genet. 1 45–49

    Article  PubMed  CAS  Google Scholar 

  • El-Deiry W S, Tokino T, Velculescu V E, Levy D B, Parsons R, Trent J M, Lin D, Mercer W E, Kinzler K W and Vogelstein B 1993 WAF1, a potential mediator of p53 tumor suppression; Cell 75 817–825

    Article  PubMed  CAS  Google Scholar 

  • Friedlander P, Legros Y, Soussi T and Prives C 1996 Regulation of mutant p53 temperature-sensitive DNA binding; J. Biol. Chem. 271 25468–25478

    Article  PubMed  CAS  Google Scholar 

  • Garbuzynskiy S O, Melnik B S, Lobanov M Y, Finkelstein A V and Galzitskaya O V 2005 Comparison of X-ray and NMR structures: Is there a systematic difference in residue contacts between X-ray and NMR-resolved protein structures?; Proteins Struct. Function Bioinform. 60 139–147

    Article  CAS  Google Scholar 

  • Gilson M K and Honig B H 1988 Calculation of the electrostatic potential in solution: Method and error assessment; J. Comp. Chem. 9 327–335

    Article  CAS  Google Scholar 

  • Harper J W, Adami G R, Wei N, Keyomarsi K and Elledge S J 1993 The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases; Cell 75 805–816

    Article  PubMed  CAS  Google Scholar 

  • Hollstein, M., Rice, K., Soussi, T., Fuchs, R., Sorlie, T., Hovig, E., Smith-Sorensen, B., Montesano R and Harris C C 1994 Database of p53 gene somatic mutations in human tumours and cell lines; Nucleic Acids Res. 22 3551–3555

    PubMed  CAS  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B and Harris C C 1991 p53 mutations in human cancers; Science 253 49–53

    Article  PubMed  CAS  Google Scholar 

  • Jayaram B and Jain T 2004 The role of water in protein-DNA recognition; Annu. Rev. Biophys. Biomol. Struct. 33 343–361

    Article  PubMed  CAS  Google Scholar 

  • Jayaram B, McConnell K J, Surjit B D and Beveridge D L 1999 Free energy analysis of protein-DNA binding: The EcoRI Endonuclease-DNA complex; J. Comp. Phys. 151 333–357

    Article  CAS  Google Scholar 

  • Joerger A C, Ang H C and Fersht A R 2006 Structural basis for understanding oncogenic p53 mutations and designing rescue drugs; Proc. Natl. Acad. Sci. USA 103 15056–15061

    Article  PubMed  CAS  Google Scholar 

  • Joerger A C, Ang H C, Veprintsev D B, Blair C M and Fersht A R 2005 Structures of p53 Cancer Mutants and Mechanism of Rescue by Second-site Suppressor Mutations; J. Biol. Chem. 280 16030–16037

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 Comparison of simple potentials for simulating liquid water; J. Chem. Phys. 79 926–923

    Article  CAS  Google Scholar 

  • Koradi R, Billeter M and Wuthrich K 1996 MOLMOL: a program for display and analysis of macromolecular structures; J. Mol. Graph. 14 51–55

    Article  PubMed  CAS  Google Scholar 

  • Lee B and Richards F M 1971 The interpretation of protein structures: Estimation of static accessibility; J. Mol. Biol. 55 379–400

    Article  PubMed  CAS  Google Scholar 

  • MacKerell J A D, Bashford D, Bellott M, Dunbrack R, Evanseck J D, Field M J, Fischer S, Gao J et al 1998 All-hydrogen empirical potential for molecular modelling and dynamics studies of proteins using the CHARMM22 force field; J. Phys. Chem. B. 102 3586–3616

    Article  CAS  Google Scholar 

  • Mandel-Gutfreund Y and Margalit H 1998 Quantitative parameters for amino acid-base interaction: implications for prediction of protein-DNA binding sites; Nucleic Acids Res. 26 2306–2312

    Article  PubMed  CAS  Google Scholar 

  • May P and May E 1999 Twenty years of p53 research: structural and functional aspects of the p53 protein; Oncogene 18 7621–7636

    Article  PubMed  CAS  Google Scholar 

  • Nina M, Beglov D and Roux B 1997 Atomic radii for continuum electrostatic calculations based on molecular dynamics free energy calculations; J. Phys. Chem. B 101 5239–5248

    Article  CAS  Google Scholar 

  • Ory K, Legros Y, Auguin C and Soussi T 1994 Analysis of the most representative tumour-derived p53 mutants reveals that changes in the protein conformation are not correlated with loss of transactivation or inhibition of cell prolifereation; EMBO J. 13 3496–3504

    PubMed  CAS  Google Scholar 

  • Petsko G and Ringe D 1984 Fluctuations in protein structure from X-ray diffraction; Annu. Rev. Biophys. Bioeng. 13 331–371

    Article  PubMed  CAS  Google Scholar 

  • Philippopoulos M and Lim C 1995 Molecular dynamics simulation of E. coli ribonuclease H1 in solution: Correlation with NMR and X-ray data and insights into biological function; J. Mol. Biol. 254 771–792

    Article  PubMed  CAS  Google Scholar 

  • Pietenpol J A, Tokino T, Thiagalingam S, El-Deiry W S, Kinzler K W and Vogelstein B 1994 Sequence-specific transcriptional activation is essential for growth suppression by p53; Proc. Natl. Acad. Sci. USA 91 1998–2002

    Article  PubMed  CAS  Google Scholar 

  • Rolley N, Butcher S and Milner J 1995 Specific DNA binding by different classes of human p53 mutants; Oncogene 11 763–770

    PubMed  CAS  Google Scholar 

  • Sakharov D and Lim C 2005 Zn protein simulations including charge transfer and local polarization effects; J. Am. Chem. Soc. 127 4921–4929

    Article  PubMed  CAS  Google Scholar 

  • Sharp K A, Nicholls A, Fine R F and Honig B 1991 Reconciling the magnitude of the macroscopic and microscopic hydrophobic effects; Science 252 106–109

    Article  PubMed  CAS  Google Scholar 

  • Soussi T and May P 1996 Structural aspects of the p53 protein in relation to gene evolution: a second look; J. Mol. Biol. 260 623–637

    Article  PubMed  CAS  Google Scholar 

  • Stote R and Karplus M 1995 Zinc binding in proteins and solution: A simple but accurate nonbonded representation; Proteins Struct. Func. Genet. 23 12–31

    Article  CAS  Google Scholar 

  • Wieczorek A M, Waterman J L, Waterman M J and Halazonetis T D 1996 Structure-based rescue of common tumor-derived p53 mutants; Nat. Med. 2 1143–1146

    Article  PubMed  CAS  Google Scholar 

  • Wright J D, Noskov S Y and Lim C 2002 Factors governing loss and rescue of DNA binding upon single and double mutations in the p53 Core Domain; Nucleic Acids Res. 30 1563–1574

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Funk W D, Wright W E, Shaym J W and Deisseroth A B 1993 Novel binding of p53 mutants and their role in transcription activation; Oncogene 8 2555–2559

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmay Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, J.D., Lim, C. Mechanism of DNA-binding loss upon single-point mutation in p53. J Biosci 32 (Suppl 1), 827–839 (2007). https://doi.org/10.1007/s12038-007-0083-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-007-0083-3

Keywords

Navigation