Skip to main content
Log in

Protein stress and stress proteins: implications in aging and disease

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Environmantal stress induces damage that activates an adaptive response in any organism. The cellular stress response is based on the induction of cytoprotective proteins, the so called stress or heat shock proteins. The stress response as well as stress proteins are ubiquitous, highly conserved mechanism, and genes, respectively, already present in prokaryotes. Chaperones protect the proteome against conformational damage, promoting the function of protein networks. Protein damage takes place during aging and in several degenerative diseases, and presents a threat to overload the cellular defense mechanisms. The preservation of a robust stress response and protein disposal is indispensable for health and longevity. This review summarizes the present knowledge of protein damage, turnover, and the stress response in aging and degenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Gp:

glycoprotein

Grp:

glucose regulated protein, the number thereafter denotes molecular weight

HSF:

heat shock transcription factor

Hsp:

heat shock protein, the number thereafter denotes molecular weight

PolyQ:

polyglutamine

References

  • Ambra R, Mocchegiani E, Giacconi R, Canali R, Rinna A, Malavolta M and Virgili F 2004 Characterization of the hsp70 response in lymphoblasts from aged and centenarian subjects and differential effects of in vitro zinc supplementation; Exp. Gerontol. 39 1475–1484

    Article  PubMed  CAS  Google Scholar 

  • Arslan MA, Csermely P and Sőti C 2006 Protein homeostasis and molecular chaperones in aging; Biogerontology, Epub ahead of print DOI 10.1007/s10522-006-9053-7

  • Arya R, Mallik M and Lakhotia S C 2007 Heat shock genes and apoptosis; J. Biosci. 32 593–608

    Article  Google Scholar 

  • Bauman J W, Liu J and Klaassen C D 1993 Production of metallothionein and heat-shock proteins in response to metals; Fundam. Appl. Toxicol. 21 15–22

    Article  PubMed  CAS  Google Scholar 

  • Bence N F, Sampat R M and Kopito R R 2001 Impairment of the ubiquitin-proteasome system by protein aggregation; Science 292 1552–1555

    Article  PubMed  CAS  Google Scholar 

  • Bennett E J, Bence N F, Jayakumar R and Kopito R R 2005 Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation; Mol. Cell. 17 351–365

    Article  PubMed  CAS  Google Scholar 

  • Bulteau A L, Verbeke P, Petropoulos I, Chaffotte A F and Friguet B 2001 Proteasome inhibition in glyoxal-treated fibroblasts and resistance of glycated glucose-6-phosphate dehydrogenase to 20 S proteasome degradation in vitro; J. Biol. Chem. 276 45662–45668

    Article  PubMed  CAS  Google Scholar 

  • Calabrese E J 2006 The failure of dose-response models to predict low-dose effects: a major challenge for biomedical, toxicological and aging research; Biogerontology 7 119–122

    Article  PubMed  Google Scholar 

  • Christians E S and Benjamin I J 2006 Heat shock response: lessons from mouse knockouts; in Molecular chaperones in health and disease (ed.) M Gaestel (Berlin: Springer Verlag) pp 139–152

    Chapter  Google Scholar 

  • Cloos P A and Christgau S 2004 Post-translational modifications of proteins: implications for aging, antigen recognition, and autoimmunity; Biogerontology 5 139–158

    Article  PubMed  CAS  Google Scholar 

  • Conconi M, Szweda L I, Levine R L, Stadtman E R and Friguet B 1996 Age-related decline of rat liver multicatalytic proteinase activity and protection from oxidative inactivation by heatshock protein 90; Arch. Biochem. Biophys. 331 232–240

    Article  PubMed  CAS  Google Scholar 

  • Csermely P 2001 Chaperone overload is a possible contributor to ‘civilization diseases’; Trends Genet. 17 701–704

    Article  PubMed  CAS  Google Scholar 

  • Csermely P 2006 Weak links: Stabilizers of complex systems from proteins to social networks (Heidelberg: Springer Verlag)

    Google Scholar 

  • Chondrogianni N and Gonos E S 2005 Proteasome dysfunction in mammalian aging: steps and factors involved; Exp. Gerontol. 40 931–938

    Article  PubMed  CAS  Google Scholar 

  • Cuervo A M 2004 Autophagy: many paths to the same end; Mol. Cell Biochem. 263 55–72

    Article  PubMed  CAS  Google Scholar 

  • Cuervo A M, Stefanis L, Fredenburg R, Lansbury P T and Sulzer D 2004 Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy; Science 305 1292–1295

    Article  PubMed  CAS  Google Scholar 

  • Dantuma N P, Groothuis T A, Salomons F A and Neefjes J 2006 A dynamic ubiquitin equilibrium couples proteasomal activity to chromatin remodeling; J. Cell. Biol. 173 19–26

    Article  PubMed  CAS  Google Scholar 

  • Dobson, C M 2003 Protein folding and misfolding; Nature (London) 426 884–890

    Article  CAS  Google Scholar 

  • Friguet B 2006 Oxidized protein degradation and repair in ageing and oxidative stress; FEBS Lett. 580 2910–2916

    Article  PubMed  CAS  Google Scholar 

  • Garigan D, Hsu A L, Fraser A G, Kamath R S, Ahringer J and Kenyon C 2002 Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation; Genetics 161 1101–1112

    PubMed  CAS  Google Scholar 

  • Gidalevitz T, Ben-Zvi A, Ho K H, Brignull H R and Morimoto R I 2006 Progressive disruption of cellular protein folding in models of polyglutamine diseases; Science 311 1471–1474

    Article  PubMed  CAS  Google Scholar 

  • Goldberg A L 2003 Protein degradation and protection against misfolded or damaged proteins; Nature (London) 426 895–899

    Article  CAS  Google Scholar 

  • Hartl F-U 1996 Molecular chaperones in cellular protein folding; Nature (London) 381 571–580

    Article  CAS  Google Scholar 

  • Heydari A R, You S, Takahashi R, Gutsmann-Conrad A, Sarge K D and Richardson A 2000 Age-related alterations in the activation of heat shock transcription factor 1 in rat hepatocytes; Exp. Cell. Res. 256 83–93

    Article  PubMed  CAS  Google Scholar 

  • Hsu A L, Murphy C T and Kenyon C 2003 Regulation of aging and age-related disease by DAF-16 and heat-shock factor; Science 300 1142–1145

    Article  PubMed  CAS  Google Scholar 

  • Macario A J and Conway de Macario E 2005 Sick chaperones, cellular stress, and disease; N. Engl. J. Med. 353 1489–1501

    Article  PubMed  CAS  Google Scholar 

  • Massey A C, Kaushik S, Sovak G, Kiffin R and Cuervo A M 2006 Consequences of the selective blockage of chaperone-mediated autophagy; Proc. Natl. Acad. Sci. USA 103 5805–5810

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto G, Kim S and Morimoto R I 2006 Huntingtin and mutant SOD1 form aggregate structures with distinct molecular properties in human cells; J. Biol. Chem. 281 4477–4485

    Article  PubMed  CAS  Google Scholar 

  • Meriin A B and Sherman M Y 2005 Role of molecular chaperones in neurodegenerative disorders. Int. J. Hyperthermia 21 403–419

    Article  PubMed  CAS  Google Scholar 

  • Morimoto R I 1998 Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators; Genes. Dev. 12 3788–3796

    PubMed  CAS  Google Scholar 

  • Morley J F, Brignull H R, Weyers J J and Morimoto R I 2002 The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans; Proc. Natl. Acad. Sci. USA 99 10417–10422

    Article  PubMed  Google Scholar 

  • Morley J F and Morimoto R I 2004 Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones; Mol. Biol. Cell. 15 657–664

    Article  PubMed  CAS  Google Scholar 

  • Morrow G, Samson M, Michaud S and Tanguay R M 2004 Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress; FASEB J. 18 598–599

    PubMed  CAS  Google Scholar 

  • Mukai H, Isagawa T, Goyama E, Tanaka S, Bence N F, Tamura A, Ono Y and Kopito R R 2005 Formation of morphologically similar globular aggregates from diverse aggregation-prone proteins in mammalian cells; Proc. Natl. Acad. Sci. USA 102 10887–10892

    Article  PubMed  CAS  Google Scholar 

  • Nardai G, Csermely P and Sőti C 2002 Chaperone function and chaperone overload in the aged. A preliminary analysis; Exp. Gerontol. 37 1257–1262

    Article  PubMed  CAS  Google Scholar 

  • Nardai G, Vegh E, Prohaszka Z and Csermely P 2006 Chaperone-related immune dysfunctions: An emergent property of distorted chaperone-networks; Trends Immunol. 27 74–79

    Article  PubMed  CAS  Google Scholar 

  • Nollen E A, Garcia S M, van Haaften G, Kim S, Chavez A and Morimoto R I 2004 Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation; Proc. Natl. Acad. Sci. USA 101 6403–6408

    Article  PubMed  CAS  Google Scholar 

  • Pratt W B and Toft D O 2003 Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery; Exp. Biol. Med. 228 111–133

    CAS  Google Scholar 

  • Rattan S I 2004 Aging intervention, prevention, and therapy through hormesis; J. Gerontol. A Biol. Sci. Med. Sci. 59 705–709

    PubMed  Google Scholar 

  • Schaffar G, Breuer P, Boteva R, Behrends C, Tzvetkov N, Strippel N, Sakahira H, Siegers K, Hayer-Hartl M and Hartl F U 2004 Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation; Mol. Cell 15 95–105

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Kolvraa S, Bross P, Jensen U B, Gregersen N, Tan Q, Knudsen C and Rattan S I 2006 Reduced heat shock response in human mononuclear cells during aging and its association with polymorphisms in HSP70 genes; Cell Stress Chaperones 3 208–215

    Article  Google Scholar 

  • Sőti C and Csermely P 2000 Molecular chaperones and the aging process; Biogerontology 1 225–233

    Article  PubMed  Google Scholar 

  • Sőti C and Csermely P 2003 Aging and molecular chaperones; Exp. Gerontol. 38 1037–1040

    Article  PubMed  Google Scholar 

  • Sőti C, Pal C, Papp B and Csermely P 2005 Chaperones as regulatory elements of cellular networks; Curr. Opinion Cell Biol. 17 210–215

    Article  PubMed  Google Scholar 

  • Sőti Cs and Csermely P 2006 Pharmacological modulation of the heat shock response; in: Molecular chaperones in health and disease (ed.) M Gaestel (Berlin: Springer Verlag) pp 417–436

    Chapter  Google Scholar 

  • Sreedhar A S and Csermely P 2004 Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review; Pharmacol. Ther. 101 227–257

    Article  PubMed  CAS  Google Scholar 

  • Stadtman E R 2004 Role of oxidant species in aging; Curr. Med. Chem. 11 1105–1112

    PubMed  CAS  Google Scholar 

  • Xiao X, Zuo X, Davis AA, McMillan D R, Curry B B, Richardson J A and Benjamin I J 1999 HSF1 is required for extraembryonic development, postnatal growth and protection during inflammatory responses in mice; EMBO J. 18 5943–5952

    Article  PubMed  CAS  Google Scholar 

  • Young J C, Agashe V R, Siegers K and Hartl F U 2004 Pathways of chaperone-mediated protein folding in the cytosol; Nat. Rev. Mol. Cell. Biol. 5 781–791

    Article  PubMed  CAS  Google Scholar 

  • Yu W H, Cuervo A M, Kumar A, Peterhoff C M, Schmidt S D, Lee J H, Mohan P S, Mercken M, Farmery M R, Tjernberg L O, Jiang Y, Duff K, Uchiyama Y, Naslund J, Mathews P M, Cataldo A M and Nixon R A 2005 Macroautophagy — a novel Beta-amyloid peptide-generating pathway activated in Alzheimer’s disease; J. Cell Biol. 171 87–98

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Cao F, Wang Z, Yu Z X, Nguyen H P, Evans J, Li S H and Li X J 2003 Huntingtin forms toxic NH2-terminal fragment complexes that are promoted by the age-dependent decrease in proteasome activity; J. Cell. Biol. 163 109–118

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Sőti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sőti, C., Csermely, P. Protein stress and stress proteins: implications in aging and disease. J Biosci 32, 511–515 (2007). https://doi.org/10.1007/s12038-007-0050-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-007-0050-z

Keywords

Navigation