Skip to main content
Log in

Studying stress responses in the post-genomic era: its ecological and evolutionary role

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Most investigations on the effects of and responses to stress exposures have been performed on a limited number of model organisms in the laboratory. Here much progress has been made in terms of identifying and describing beneficial and detrimental effects of stress, responses to stress and the mechanisms behind stress tolerance. However, to gain further understanding of which genes are involved in stress resistance and how the responses are regulated from an ecological and evolutionary perspective there is a need to combine studies on multiple levels of biological organization from DNA to phenotypes. Furthermore, we emphasize the importance of studying ecologically relevant traits and natural or semi-natural conditions to verify whether the results obtained are representative of the ecological and evolutionary processes in the field. Here, we will review what we currently know about thermal adaptation and the role of different stress responses to thermal challenges in insects, particularly Drosophila. Furthermore, we address some key questions that require future attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahrndorff S, Holmstrup M, Petersen H and Loeschcke V 2006 Geographic variation for climatic stress resistance traits in the springtail Orchesella cincta; J. Insect Physiol. 52 951–959

    Article  PubMed  CAS  Google Scholar 

  • Balanya J, Oller J M, Huey R B, Gilchrist G W and Serra L 2006 Global genetic change tracks global climate warming in Drosophila subobscura; Science 313 1773–1775

    Article  PubMed  CAS  Google Scholar 

  • Baldal E A, Baktawar W, Brakefield P M and Zwaan B J 2006 Methuselah life history in a variety of conditions, implications for the use of mutants in longevity research; Exp. Gerontol. 41 1126–1135

    Article  PubMed  CAS  Google Scholar 

  • Basu N, Todgham A E, Ackerman P A, Bibeau M R, Nakano K, Schulte P M and Iwama G K 2002 Heat shock protein genes and their functional significance in fish; Gene 295 173–183

    Article  PubMed  CAS  Google Scholar 

  • Bettencourt B R, Feder M E and Cavicchi S 1999 Experimental evolution of Hsp70 expression and thermotolerance in Drosophila melanogaster; Evolution 53 484–492

    Article  CAS  Google Scholar 

  • Bettencourt B R, Kim I, Hoffmann A A and Feder M E 2002 Response to natural and laboratory selection at the Drosophila hsp70 genes; Evolution 56 1796–1801

    PubMed  CAS  Google Scholar 

  • Bijlsma R and Loeschcke V (Eds) 1997 Environmental stress, adaptation and evolution (Basel: Birkhäuser Verlag)

    Google Scholar 

  • Bubliy O A and Loeschcke V 2005 Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster; J. Evol. Biol. 18 789–803

    Article  PubMed  CAS  Google Scholar 

  • Burton V, Mitchell H K, Young P and Petersen N S 1988 Heat shock protection against cold stress of Drosophila melanogaster; Mol. Cell. Biol. 8 3550–3552

    PubMed  CAS  Google Scholar 

  • Chen C P, Denlinger D L and Lee R E 1987 Cold-shock injury and rapid cold hardening in the flesh fly Sarcophaga crassipalpis; Physiol. Zool. 60 297–304

    Google Scholar 

  • Chown S L 2001 Physiological variation in insects: hierarchical levels and implications; J. Insect Physiol. 47 649–660

    Article  PubMed  CAS  Google Scholar 

  • Coulson S J and Bale J S 1991 Anoxia induces rapid cold hardening in the housefly Musca domestica (Diptera, Muscidae); J. Insect Physiol. 37 497–501

    Article  Google Scholar 

  • Dahlgaard J, Hasson E and Loeschcke V 2001 Behavioral differentiation in oviposition activity in Drosophila buzzatii from highland and lowland populations in Argentina: Plasticity or thermal adaptation?; Evolution 55 738–747

    Article  PubMed  CAS  Google Scholar 

  • Dahlgaard J, Loeschcke V, Michalak P and Justesen J 1998 Induced thermotolerance and associated expression of the heat-shock protein Hsp70 in adult Drosophila melanogaster; Funct. Ecol. 12 786–793

    Article  Google Scholar 

  • David J R, Araripe L O, Chakir M, Legout H, Lemos B, Petavy G, Rohmer C, Joly D and Moreteau B 2005 Male sterility at extreme temperatures: a significant but neglected phenomenon for understanding Drosophila climatic adaptations; J. Evol. Biol. 18 838–846

    Article  PubMed  CAS  Google Scholar 

  • Fader S C, Yu Z and Spotila J R 1994 Seasonal variation in heat shock proteins (hsp70) in stream fish under natural conditions; J. Therm. Biol. 19 335–341

    Article  CAS  Google Scholar 

  • Fasolo A G and Krebs R A 2004 A comparison of behavioural change in Drosophila during exposure to thermal stress; Biol. J. Linn. Soc. 83 197–205

    Article  Google Scholar 

  • Feder M E 1996 Ecological and evolutionary physiology of stress proteins and the stress response: the Drosophila melanogaster model; in Animals and temperature (eds) I A Johnston and A F Bennet (Cambridge: Cambridge University Press) pp 79–102

    Google Scholar 

  • Feder M E, Blair N and Figueras H 1997 Natural thermal stress and heat-shock protein expression in Drosophila larvae and pupae; Funct. Ecol. 11 90–100

    Article  Google Scholar 

  • Feder M E and Hofmann G E 1999 Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology; Annu. Rev. Physiol. 61 243–282

    Article  PubMed  CAS  Google Scholar 

  • Feder M E, Roberts S P and Bordelon A C 2000 Molecular thermal telemetry of free-ranging adult Drosophila melanogaster; Oecologia 123 460–465

    Article  Google Scholar 

  • Frydenberg J, Hoffmann A A and Loeschcke V 2003 DNA sequence variation and latitudinal associations in hsp23, hsp26 and hsp27 from natural populations of Drosophila melanogaster; Mol. Ecol. 12 2025–2032

    Article  PubMed  CAS  Google Scholar 

  • Frydenberg J, Pertoldi C, Dahlgaard J and Loeschcke V 2002 Genetic variation in original and colonizing Drosophila buzzatii populations analysed by microsatellite loci isolated with a new PCR screening method; Mol. Ecol. 11 181–190

    Article  PubMed  CAS  Google Scholar 

  • Gehring W J and Wehner R 1995 Heat shock protein synthesis and thermotolerance in Cataglyphis, an ant from the Sahara desert; Proc. Natl. Acad. Sci. USA 92 2994–2998

    Article  PubMed  CAS  Google Scholar 

  • Goto S G and Kimura M T 1998 Heat-and cold-shock responses and temperature adaptations in subtropical and temperate species of Drosophila; J. Insect Physiol. 44 1233–1239

    Article  PubMed  CAS  Google Scholar 

  • Hercus M J, Loeschcke V and Rattan S I S 2003 Lifespan extension of Drosophila melanogaster through hormesis by repeated mild heat stress; Biogerontology 4 149–156

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann A A and Hercus M J 2000 Environmental stress as an evolutionary force; Bioscience 50 217–226

    Article  Google Scholar 

  • Hoffmann A A and Parsons P A 1991 Evolutionary genetics and environmental stress (New York: Oxford University Press)

    Google Scholar 

  • Hoffmann A A and Parsons P A 1997 Extreme environmental change and evolution (Cambridge: Cambridge University Press)

    Google Scholar 

  • Hoffmann A A, Sørensen J G and Loeschcke V 2003 Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches; J. Therm. Biol. 28 175–216

    Article  Google Scholar 

  • Hoffmann A A and Watson M 1993 Geographical variation in the acclimation responses of Drosophila to temperature extremes; Am. Nat. 142 S93–S113

    Article  Google Scholar 

  • Jedlicka P, Mortin M A and Wu C 1997 Multiple functions of Drosophila heat shock transcription factor in vivo; EMBO J. 16 2452–2462

    Article  PubMed  CAS  Google Scholar 

  • Joplin K H and Denlinger D L 1990 Developmental and tissue specific control of the heat-shock induced 70-Kda related proteins in the flesh fly, Sarcophaga crassipalpis; J. Insect Physiol. 36 239–245

    Article  CAS  Google Scholar 

  • Jørgensen K T, Sørensen J G and Bundgaard J 2006 Heat tolerance and the effect of mild heat stress on reproductive characters in Drosophila buzzatii males; J. Therm. Biol. 31 280–286

    Article  Google Scholar 

  • Kelty J D and Lee R E 1999 Induction of rapid cold hardening by cooling at ecologically relevant rates in Drosophila melanogaster; J. Insect Physiol. 45 719–726

    Article  PubMed  CAS  Google Scholar 

  • Kelty J D and Lee R E 2001 Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophilidae) during ecologically based thermoperiodic cycles; J. Exp. Biol. 204 1659–1666

    PubMed  CAS  Google Scholar 

  • Köhler H R, Zanger M, Eckwert H and Einfeldt I 2000 Selection favours low Hsp70 levels in chronically metal-stressed soil arthropods; J. Evol. Biol. 13 569–582

    Article  Google Scholar 

  • Koorsloot A, van Gestel C A M and van Straalen N M 2004 Environmental stress and cellular response in Artropods (Boca Ratton, Florida: CRC Press)

    Google Scholar 

  • Krebs R A and Feder M E 1998 Hsp70 and larval thermotolerance in Drosophila melanogaster: how much is enough and when is more too much?; J. Insect Physiol. 44 1091–1101

    Article  PubMed  CAS  Google Scholar 

  • Krebs R A, Feder M E and Lee J 1998 Heritability of expression of the 70KD heat-shock protein in Drosophila melanogaster and its relevance to the evolution of thermotolerance; Evolution 52 841–847

    Article  CAS  Google Scholar 

  • Krebs R A and Loeschcke V 1994 Costs and benefits of activation of the heat-shock response in Drosophila melanogaster; Funct. Ecol. 8 730–737

    Article  Google Scholar 

  • Krebs R A and Loeschcke V 1995 Resistance to thermal stress in preadult Drosophila buzzatti: Variation among populations and changes in relative resistance across life stages; Biol. J. Linn. Soc. 56 517–531

    Article  Google Scholar 

  • Krebs R A and Loeschcke V 1999 A genetic analysis of the relationship between life-history variation and heat-shock tolerance in Drosophila buzzatii; Heredity 83 46–53

    Article  PubMed  Google Scholar 

  • Krebs R A and Thompson K A 2006 Direct and correlated effects of selection on flight after exposure to thermal stress in Drosophila melanogaster; Genetica 128 217–225

    Article  PubMed  Google Scholar 

  • Kristensen T N, Loeschcke V and Hoffmann A A 2007 Can artificially selected phenotypes influence a component of field fitness? Thermal selection and fly performance under thermal extremes; Proc. R. Soc London B 274 771–778

    Article  Google Scholar 

  • Lakhotia S C and Singh A K 1989 A novel set of heat shock polypeptides in Malpighian tubules of Drosophila melanogaster. J. Genet. 68 129–137

    Article  CAS  Google Scholar 

  • Lakhotia S C and Prasanth K V 2002 Tissue and development specific induction and turnover of hsp70 transcripts from 87A and 87C loci after heat shock and during recovery in Drosophila melanogaster; J. Exp. Biol. 205 345–358

    PubMed  CAS  Google Scholar 

  • Lee R E, Chen C P and Denlinger D L 1987 A rapid cold hardening process in insects; Science 238 1415–1417

    Article  PubMed  Google Scholar 

  • Lee R E, Damodaran K, Yi S X and Lorigan G A 2006 Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells; Cryobiology 52 459–463

    Article  PubMed  CAS  Google Scholar 

  • Lee R E and Denlinger D L (eds) 1991 Insects at low temperature (New York: Chapman and Hall)

    Google Scholar 

  • Lindquist S L 1986 The heat-shock response; Annu. Rev. Biochem. 55 1151–1191

    Article  PubMed  CAS  Google Scholar 

  • Loeschcke V and Hoffmann A A 2007 Heat hardening benefits and costs on field fitness of Drosophila depend on environmental temperature; Am. Nat. 169 175–183

    Article  PubMed  Google Scholar 

  • Loeschcke V, Krebs R A and Barker J S F 1994 Genetic variation for resistance and acclimation to high temperature stress in Drosophila buzzatii; Biol. J. Linn. Soc. 52 83–92

    Article  Google Scholar 

  • Loeschcke V, Sørensen J G and Kristensen T N 2004 Ecologically relevant stress resistance: from microarrays and quantitative trait loci to candidate genes — A research plan and preliminary results using Drosophila as a model organism and climatic and genetic stress as model stresses; J. Biosci. 29 503–511

    PubMed  Google Scholar 

  • Malmendal A, Overgaard J, Bundy J G, Sørensen J G, Nielsen N C, Loeschcke V and Holmstrup M 2006 Metabolomic profiling of heat stress: hardening and recovery of homeostasis in Drosophila; Am. J. Physiol.l-Reg I 291 R205–R212

    CAS  Google Scholar 

  • McColl G, Hoffmann A A and McKechnie S W 1996 Response to two heat shock genes to selection for knockdown heat resistance in Drosophila melanogaster; Genetics 143 1615–1627

    PubMed  CAS  Google Scholar 

  • McKechnie S W, Halford M M, McColl G and Hoffmann A A 1998 Both allelic variation and expression of nuclear and cytoplasmic transcripts of hsr-omega are closely associated with thermal phenotype in Drosophila; Proc. Natl. Acad. Sci. USA 95 2423–2428

    Article  PubMed  CAS  Google Scholar 

  • McMillan D M, Fearnley S L, Rank N E and Dahlhoff E P 2005 Natural temperature variation affects larval survival, development and Hsp70 expression in a leaf beetle; Funct. Ecol. 19 844–852

    Article  Google Scholar 

  • Merino S, Martinez J, Barbosa A, Moller A P, de Lope F, Perez J and Rodriguez-Caabeiro F 1998 Increase in a heat-shock protein from blood cells in response of nestling house martins (Delichon urbica) to parasitism: an experimental approach; Oecologia 116 343–347

    Article  Google Scholar 

  • Michaud M R and Denlinger D L 2006 Oleic acid is elevated in cell membranes during rapid cold-hardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis; J. Insect Physiol. 52 1073–1082

    Article  PubMed  CAS  Google Scholar 

  • Morimoto R I, Jurivich D A, Kroeger P E, Mathur S K, Murphy S P, Nakai A, Sarge K, Abravaya K and Sistonen L T 1994. Regulation of heat shock gene transcription by a family of heat shock factors; in the biology of heat shock proteins and molecular chaperones (eds) R I Morimoto, A Tissières and C Georgopoulos (New York: Cold Spring Harbor Laboratory Press) pp 417–455

    Google Scholar 

  • Nielsen M M, Overgaard J, Sørensen J G, Holmstrup M, Justesen J and Loeschcke V 2005 Role of the heat-shock factor during heat and cold hardening and for the resistance to severe heat and cold stress; J. Insect Physiol. 51 1320–1329

    Article  PubMed  CAS  Google Scholar 

  • Nielsen M M, Sørensen J G, Kruhøffer M, Justesen J and Loeschcke V 2006 Phototransduction genes are upregulated in a global gene expression study of Drosophila melanogaster selected for heat resistance; Cell Stress Chaperon 11 325–333

    Article  CAS  Google Scholar 

  • Norry F M, Dahlgaard J and Loeschcke V 2004 Quantitative trait loci affecting knockdown resistance to high temperature in Drosophila melanogaster; Mol. Ecol. 13 3585–3594

    Article  PubMed  CAS  Google Scholar 

  • Ohtsu T, Katagiri C and Kimura M T 1999 Biochemical aspects of climatic adaptations in Drosophila curviceps, D. immigrans, and D. albomicans (Diptera: Drosophilidae); Environ. Entomol. 28 968–972

    CAS  Google Scholar 

  • Overgaard J, Sørensen J G, Petersen S O, Loeschcke V and Holmstrup M 2005 Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster; J. Insect Physiol. 51 1173–1182

    Article  PubMed  CAS  Google Scholar 

  • Overgaard J, Sørensen J G, Petersen S O, Loeschcke V and Holmstrup M 2006 Reorganization of membrane lipids during fast and slow cold hardening in Drosophila melanogaster; Physiol. Entomol. 31 328–335

    Article  CAS  Google Scholar 

  • Parsell D A and Lindquist S 1993 The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins; Annu. Rev. Genet. 27 437–496

    Article  PubMed  CAS  Google Scholar 

  • Pauwels K, Stoks R and De Meester L 2005 Coping with predator stress: interclonal differences in induction of heat-shock proteins in the water flea Daphnia magna; J. Evol. Biol. 18 867–872

    Article  PubMed  CAS  Google Scholar 

  • Pletcher S D, Macdonald S J, Marguerie R, Certa U, Stearns S C, Goldstein D B and Partridge L 2002 Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster; Curr. Biol. 12 712–723

    Article  PubMed  CAS  Google Scholar 

  • Qin W, Neal S J, Robertson R M, Westwood J T and Walker V K 2005 Cold hardening and transcriptional change in Drosophila melanogaster; Insect Mol. Biol. 14 607–613

    Article  PubMed  CAS  Google Scholar 

  • Rako L and Hoffmann A A 2006 Complexity of the cold acclimation response in Drosophila melanogaster; J. Insect Physiol. 52 94–104

    Article  PubMed  CAS  Google Scholar 

  • Rinehart J P, Denlinger D L and Rivers D B 2002 Upregulation of transcripts encoding select heat shock proteins in the flesh fly Sarcophaga crassipalpis in response to venom from the ectoparasitoid wasp Nasonia vitripennis; J. Invertebr. Pathol. 79 62–63

    Article  PubMed  CAS  Google Scholar 

  • Sagarin R D and Somero G N 2006 Complex patterns of expression of heat-shock protein 70 across the southern biogeographical ranges of the intertidal mussel Mytilus californianus and snail Nucella ostrina; J. Biogeogr. 33 622–630

    Article  Google Scholar 

  • Sarup P, Dahlgaard J, Norup A M, Jørgensen K T, Hebsgaard M B and Loeschcke V 2004 Down regulation of Hsp70 expression level prolongs the duration of heat-induced male sterility in Drosophila buzzatii; Funct. Ecol. 18 365–370

    Article  Google Scholar 

  • Sarup P, Sørensen J G, Dimitrov K, Barker J S F and Loeschcke V 2006 Climatic adaptation of Drosophila buzzatii populations in southeast Australia; Heredity 96 479–486

    Article  PubMed  CAS  Google Scholar 

  • Sejerkilde M, Sørensen J G and Loeschcke V 2003 Effects of cold-and heat hardening on thermal resistance in Drosophila melanogaster; J. Insect Physiol. 49 719–726

    Article  PubMed  CAS  Google Scholar 

  • Shreve S M, Kelty J D and Lee R E 2004 Preservation of reproductive behaviors during modest cooling: rapid cold-hardening fine-tunes organismal response; J. Exp. Biol. 207 1797–1802

    Article  PubMed  Google Scholar 

  • Silbermann R and Tatar M 2000 Reproductive costs of heat shock protein in transgenic Drosophila melanogaster; Evolution 54 2038–2045

    PubMed  CAS  Google Scholar 

  • Sinclair B J and Roberts S P 2005 Acclimation, shock and hardening in the cold; J. Therm. Biol. 30 557–562

    Article  Google Scholar 

  • Sørensen J G, Dahlgaard J and Loeschcke V 2001 Genetic variation in thermal tolerance among natural populations of Drosophila buzzatii: Down regulation of Hsp70 expression and variation in heat stress resistance traits; Funct. Ecol. 15 289–296

    Article  Google Scholar 

  • Sørensen J G, Kristensen T N and Loeschcke V 2003 The evolutionary and ecological role of heat shock proteins; Ecol. Lett. 6 1025–1037

    Article  Google Scholar 

  • Sørensen J G and Loeschcke V 2002 Natural adaptation to environmental stress via physiological clock-regulation of stress resistance in Drosophila; Ecol. Lett. 5 16–19

    Article  Google Scholar 

  • Sørensen J G, Michalak P, Justesen J and Loeschcke V 1999 Expression of the heat-shock protein HSP70 in Drosophila buzzatii lines selected for thermal resistance; Hereditas 131 155–164

    Article  PubMed  Google Scholar 

  • Sørensen J G, Nielsen M M, Kruhøffer M, Justesen J and Loeschcke V 2005a Gene profile analysis of the temporal heat stress response in Drosophila melanogaster; Cell Stress Chaperon 10 312–328

    Article  Google Scholar 

  • Sørensen J G, Nielsen M M and Loeschcke V 2007 Gene expression profile analysis of Drosophila melanogaster selected for resistance to environmental stressors; J. Evol. Biol. DOI: 10.1111/j.1420-9101.2007.01326.x

  • Sørensen J G, Norry F M, Scannapieco A C and Loeschcke V 2005b Altitudinal variation for stress resistance traits and thermal adaptation in adult Drosophila buzzatii from the New World; J. Evol. Biol. 18 829–837

    Article  PubMed  Google Scholar 

  • Sun W, van Montagu M and Verbruggen N 2002 Small heat shock proteins and stress tolerance in plants; BBA-Gene Struct. Exp. 1577 1–9

    CAS  Google Scholar 

  • Thomson L J, Robinson M and Hoffmann A A 2001 Field and laboratory evidence for acclimation without costs in an egg parasitoid; Funct. Ecol. 15 217–221

    Article  Google Scholar 

  • Ulmasov H A, Karaev K K, Lyashko V N and Evgenev M B 1993 Heat-shock response in camel (Camelus dromedarius) blood-cells and adaptation to hyperthermia; Comp. Biochem. Phys. B 106 867–872

    Article  CAS  Google Scholar 

  • Umina P A, Weeks A R, Kearney M R, McKechnie S W and Hoffmann A A 2005 A rapid shift in a classic clinal pattern in Drosophila reflecting climate change; Science 308 691–693

    Article  PubMed  CAS  Google Scholar 

  • Zachariassen K E 1985 Physiology of cold tolerance in insects; Physiol. Rev. 65 799–832

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper G Sørensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sørensen, J.G., Loeschcke, V. Studying stress responses in the post-genomic era: its ecological and evolutionary role. J Biosci 32, 447–456 (2007). https://doi.org/10.1007/s12038-007-0044-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-007-0044-x

Keywords

Navigation