Skip to main content
Log in

Formal TCA cycle description based on elementary actions

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Many databases propose their own structure and format to provide data describing biological processes. This heterogeneity contributes to the difficulty of large systematic and automatic functional comparisons. To overcome these problems, we have used the Bio formal description scheme which allows multi-level representations of biological process information. Applied to the description of the tricarboxylic acid cycle (TCA), we show that Bio allows the formal integration of functional information existing in current databases and make them available for further automated analysis. In addition such a formal TCA cycle process description leads to a more accurate biological process annotation which takes in account the biological context. This enables us to perform an automated comparison of the TCA cycles for seven different species based on processes rather than protein sequences. From current databases, Bio is able to unravel information that are already known by the biologists but are not available for automated analysis tools and simulation software, because of the lack of formal process descriptions. This use of the Bio description scheme to describe the TCA cycle was a key step of the MitoScop project that aims to describe and simulate mitochondrial metabolism in silico.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α-KDH:

α-ketoglutarate dehydrogenase

BAs:

biological activities

BEAs:

basic elements of action

BFs:

biological functionalities

BRs:

biological roles

FADH2:

reduced flavin adenine dinucleotide

GO:

Gene Ontology

NADH:

reduced nicotinamide adenine dinucleotide

PDH:

pyruvate dehydrogenase

SMILES:

simplified molecular input line entry system

SMIRKS:

SMIles ReaKtion Specification

References

  • Bairoch A, Boeckmann B, Ferro S and Gasteiger E 2004 Swiss-prot: Juggling between evolution and stability; Brief. Bioinform. 5 39–55.

    Article  PubMed  CAS  Google Scholar 

  • Busch W and Saier M H Jr 2003 The IUBMB-endorsed transporter classification system; Methods Mol. Biol. 227 21–36

    PubMed  CAS  Google Scholar 

  • Dandekar T, Schuster S, Snel B, Huynen M and Bork P 1999 Pathway alignment: application to the comparative analysis of glycolytic enzymes; Biochem. J. 343Pt 1, 115–124

    Article  PubMed  CAS  Google Scholar 

  • Fleischmann A, Darsow M, Degtyarenko K, Fleischmann W, Boyce S, Axelsen K, Bairoch A, Schomburg D, Tipton K and Apweiler R 2004 IntEnz, the integrated relational enzyme database; Nucleic Acids Res. 32 434–437

    Article  CAS  Google Scholar 

  • Hanks S and Quinn A 1991 Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members; Methods Enzymol. 200 38–62

    Article  PubMed  CAS  Google Scholar 

  • Harris M A, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S et al 2004 The Gene Ontology (GO) database and informatics resource; Nucleic Acids Res. 32 D258–D261

    Article  PubMed  CAS  Google Scholar 

  • Hedley W 2000 Xml languages for describingbiological models; Proc. Physiol. Soc. New Zealand 19

  • Hucka M, Finney A, Sauro H M, Bolouri H, Doyle J C, Kitano H, Arkin A P, Bornstein B J, et al 2003 The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models; Bioinformatics 19 524–531

    Article  PubMed  CAS  Google Scholar 

  • Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono B, Jassal B, Gopinath G R, Wu G R, Matthews L, Lewis S, Birney E and Stein L 2005 Reactome: a knowledgebase of biological pathways; Nucleic Acids Res. 33 D428–D432

    Article  PubMed  CAS  Google Scholar 

  • Karp P, Riley M, Saier M, Paulsen I, Paley S and Pellegrini-Toole A 2000 The ecocyc and metacyc databases; Nucleic Acids Res. 28 56–59

    Article  PubMed  CAS  Google Scholar 

  • Krupa A, Abhinandan K and Srinivasan N 2004 KinG: a database of protein kinases in genomes; Nucleic Acids Res. 32 D153–D155

    Article  PubMed  CAS  Google Scholar 

  • Lloyd C M, Halstead M D B and Nielsen P F 2004 CellML: its future, present and past; Prog. Biophys. Mol. Biol. 85 433–450

    Article  PubMed  CAS  Google Scholar 

  • Maziere P, Granier C and Molina F 2004 A description scheme of biological processes based on elementary bricks of action; J. Mol. Biol. 339 77–88

    Article  PubMed  CAS  Google Scholar 

  • Newes H, Amid C, Arnold R, Frishman D, Guldener U, Mannhaupt G, Munsterkotter M, Pagel P, Strac N, Stumpflen V, Warfsmann J and Ruepp A 2004 MIPS: analysis and annotation of proteins from whole genomes; Nucleic Acids Res. 32 D41–D44

    Article  Google Scholar 

  • Ogata H, Goto S, Sato K, Fujibuch W, Bono H. and Kanehisa M 1999 Kegg: Kyoto encyclopedia of genes and genomes; Nucleic Acids Res. 27 29–34

    Article  PubMed  CAS  Google Scholar 

  • Ouzounis C, Coulson R, Enright A, Kunin V and Pereira-Leal J 2003 Classification schemes for protein structure and function; Nat. Rev. Genet. 4 508–519

    Article  PubMed  CAS  Google Scholar 

  • Rison S, Hodgman T and Thornton J 2000 Comparison of functional annotation schemes for genomes; Funct. Integr. Genomics 1 56–69

    PubMed  CAS  Google Scholar 

  • Saraste M 1999 Oxidative phosphorylation at the fin de siecle; Science 283 1488–1493

    Article  PubMed  CAS  Google Scholar 

  • Schomburg I, Chang A and Schomburg D 2004 Brenda, enzyme data and metabolic information; Nucleic Acids Res. 30 47–49

    Article  Google Scholar 

  • Selkov E Jr, Grechkin Y, Mikhailova N and Selkov E 1998 Mpw: the metabolic pathways database; Nucleic Acids Res. 26 43–45

    Article  PubMed  CAS  Google Scholar 

  • Soldatova L N and King R D 2005 Are the current ontologies in biology good ontologies?; Nat. Biotechnol. 23 1095–1098

    Article  PubMed  CAS  Google Scholar 

  • Thornton J M, Todd A E, Milburn D, Borkakoti N and Orengo C A 2000 From structure to function: approaches and limitations; Nat. Struct. Biol. (Suppl.) 7 991–994

    Article  CAS  Google Scholar 

  • Weininger D 1998 SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules; J. Chem. Inf. Comput. Sci. 28 31–36

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marie Beurton-Aimar or Franck Molina.

Additional information

Both authors worked equally on this paper

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazière, P., Parisey, N., Beurton-Aimar, M. et al. Formal TCA cycle description based on elementary actions. J Biosci 32, 145–155 (2007). https://doi.org/10.1007/s12038-007-0013-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-007-0013-4

Keywords

Navigation