Skip to main content
Log in

Detection of continuum emission and atomic hydrogen from comet C/2020 F3 NEOWISE using GMRT

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

Comets are the most primordial objects in our solar system. Comets are icy bodies that release gas and dust when moving close to the Sun. The C/2020 F3 (Near-Earth Object Wide-field Infrared Survey Explorer: NEOWISE) is a nearly isotropic comet moving near-parabolic orbit. The C/2020 F3 (NEOWISE) was the brightest comet in the northern hemisphere after comet Hale–Bopp in 1997 and comet McNaught in 2006. This paper presents the first interferometric high-resolution detection of the comet C/2020 F3 (NEOWISE) using the Giant Metrewave Radio Telescope (GMRT). We detected the radio continuum emission from the comet C/2020 F3 (NEOWISE) with a flux density level 2.84 (±0.56)–3.89 (±0.57) mJy in the frequency range of 1050–1450 MHz. We also detected the absorption line of atomic hydrogen (HI) with a signal-to-noise ratio (SNR) \(\sim \)5.7. The column density of the detected HI absorption line is \(N_{\textrm{HI}} = (3.46\pm 0.60)\times (T_{s}/100)\times 10^{21}\,\hbox {cm}^{-2}\), where we assume the spin temperature \(T_{s} = 100\) K and filling factor \(f = 1\). The significant detection of continuum emission from the comet C/2020 F3 (NEOWISE) at \(\sim \)21 cm wavelength indicated that it arose from the large icy grains halo (IGH) region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. https://neowise.ipac.caltech.edu/.

  2. http://www.gmrt.ncra.tifr.res.in/.

References

  • Altenhoff W. J., Batrla W., Huchtmeier W. K. et al. 1983, A &A, 125, L19

    ADS  CAS  Google Scholar 

  • Altenhoff W. J., Huchtmeier W. K., Schmidt J. et al. 1986, A &A, 164, 227

    ADS  Google Scholar 

  • Altenhoff W. et al. 1999, A &A, 348, 1020

  • Bauer J. M., Mainzer A., Gicquel A. et al. 2020, American Astronomical Society, DPS Meeting #52, id.316.04

  • Biermann L., Trefftz E. 1964, ApJ, 59, 1

    CAS  Google Scholar 

  • Biraud F., Bourgois G., Crovisier J. et al. 1974, A &A, 34, 163

    ADS  CAS  Google Scholar 

  • Chengalur J., Kanekar N., Roy N. 2013, MNRAS, 432, 3074

    Article  ADS  CAS  Google Scholar 

  • Combi M. R., Mákinen T., Bertaux J. L., Quémerais E., Ferron S. 2021, ApJ, 907, 2

  • Cornwell T. J., Golap K., Bhatnagar S. 2008, IEEE J. Sel. Top. Signal Process., 2, 647

    Article  ADS  Google Scholar 

  • Code A. D., Houck T. E., Lillie C. F. 1970, IAU Circular No. 2201

  • Code A. D. 1972, NASA SP-310, 109

  • Crovisier J., Schloerb F. P. 1991, Kluwer Academic Publishers, 149

  • Crovisier J. 1989, A &A, 213, 459

  • Crovisier J., Colom J., Gerard E., Bockelee-Morvan D., Bourgois G. 2002, A &A, 1053

  • Crovisier J., Bockelee-Morvan D., Colom P., Biver N. 2016, Comptes Rendus Physique, 17, 985

  • de Pater I., Wade C. M., Houpis L. L. F., Palmer P. 1985, Icarus, 62, 349

    Article  ADS  Google Scholar 

  • de Pater I., Palmer P., Snyder L. E., Ip W.-H., 1986, The Exploration of Halley’s Comet, Vol. 1, 409

  • de Pater I., Palmer P., Snyder L. E. 1991, Kluwer Academic Publishers, 175

  • Dobrovolski O. V. 1958, Bull. Astrofiz. Akad. Nauk, Tadzh, SSR, p. 26

  • Giorgini J. D. 2017, IAU General Assembly

  • Greenberg J. M., 1982, University of Arizona Press, 131

  • Hobbs R. W., Maran S. P., Brandt J. C, Webster W. J., Swamy K. S. K. 1975, ApJ, 749

  • Hobbs R. W., Brandt J. C., Maran S. P. 1977, ApJ, 218, 573

    Article  ADS  Google Scholar 

  • Kitamura Y., Ashihara O., Yamamoto T. 1985, Icarus, 2, 278

    Article  ADS  Google Scholar 

  • Makinen T. 2001, Finnish Meteorological Institute, 1

  • Manzini F., Oldani V., Ochner P. et al. 2021, MNRAS, 506, 6195

    Article  ADS  Google Scholar 

  • McCoy R. P., Opal C. B., Carruthers G. R. 1986, The Exploration of Halley’s Comet, Vol. 1, 403

  • McMullin J. P., Waters B., Schiebel D. et al. 2007, ASP. SanFrancisco, CA, p. 127

    Google Scholar 

  • Paris A. 2017, J. Wash. Acad. Sci., 103, 1

    Google Scholar 

  • Perley R. A., Butler B. J. 2017, ApJ, 230, 1538

    Google Scholar 

  • Rau U., Cornwell T. J. 2011, A &A, 532, A71

    Google Scholar 

  • Rivilla V. M., Beltran M. T., Cesaroni R. et al. 2017, A &A, 598, A59

    Google Scholar 

  • Smith A. J., Anish Roshi D., Manoharan P. et al. 2021, PSJ, 2, 123

    ADS  Google Scholar 

  • Turner B. E. 1974, ApJ, 189, L137

    Article  ADS  CAS  Google Scholar 

  • Vastel C., Bottinelli S., Caux E., Glorian J. M., Boiziot M. 2015, in SF2A-2015: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, p. 313

  • Weintraub D. A., Sandell G., Duncan W. D. 1989, ApJL, 340, L69

    Article  ADS  Google Scholar 

  • Whipple F. H. 1950, ApJ, 375

Download references

Acknowledgements

We thank the anonymous referees for their helpful comments that improved the manuscript. AM acknowledges the Swami Vivekananda Merit cum Means Scholarship (SVMCM), Government of West Bengal, India, for the financial support of this research. The plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. We thank the staff of GMRT for their assistance. We acknowledge Ruta Kale for her support during the observation of the comet NEOWISE. The raw data of NEOWISE reported in this paper are available through the GMRT archive with the proposal code ddtC141. This radio telescope is operated by the National Centre for Radio Astrophysics, which is part of the Tata Institute of Fundamental Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabyasachi Pal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Manna, A. Detection of continuum emission and atomic hydrogen from comet C/2020 F3 NEOWISE using GMRT. J Astrophys Astron 45, 10 (2024). https://doi.org/10.1007/s12036-024-09998-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-024-09998-4

Keywords

Navigation