Skip to main content
Log in

Markov Chain Monte Carlo optimization applied to double stars from Miller & Pitman research

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

Model orbits have been fitted to 27 physical double stars listed in a 1922 catalog. A Markov Chain Monte Carlo technique was applied to estimate best-fitting values and associated uncertainties for the orbital parameters. Dynamical masses were calculated using parallaxes from the Hipparcos mission and are presented in this paper with the estimates of the orbital parameters for the 27 systems. The resulting mass estimates of the current study are in good agreement with a recently published study, as are comparisons with the orbital parameters listed by the Washington Double Star catalog, confirming the validity of the optimization methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For further details on STAN see https://github.com/stan-dev/stan and https://mc-stan.org/users/documentation/

References

  • Al-Wardat M. A., Hussein A. M., Al-Naimiy H. M., Barstow M. A. 2021, PASP, 38, e002. https://doi.org/10.1017/pasa.2020.50

    Article  ADS  Google Scholar 

  • Argyle B. 2004, Observing and Measuring Visual Double Stars (London: Springer-Verlag)

  • Argyle B., Swan M., James A. 2019, An Anthology of Visual Double Stars, Cambridge University Press

  • Bevington P. R. 1969, Data Reduction and Analysis for the Physical Sciences (New York: McGraw Hill)

  • Erdem A., Surgit D., Ozkardes B. et al. 2022, MNRAS, 515, 6151

    Article  ADS  Google Scholar 

  • ESA 1997, ESA Special Publication, 1200

  • Gaia Collaboration, Prusti T., de Bruijne T. H. J. et al. 2016, A &A, 595, 1

  • Gaia Collaboration, Vallenari A., Brown A. G. A. et al. 2022, Gaia Data Release 3: Summary of the content and survey properties, arXiv e-prints, arXiv:2208.00211

  • Hartkopf W. I., Mason B. D., Worley C. E. 2001, AJ, 122, 3472

  • Hogg D. W., Foreman-Mackey D. 2018, ApJSS, 236, 11

  • Lucy L. B. 2014, A &A, 563, 126

    Google Scholar 

  • MacEvoy B., Tirion W. 2015, The Cambridge Double Star Atlas, 2nd edition. Cambridge University Press

  • Malkov O. Y., Tamaziani V. S., Docobol J. A., Chulkov D. A. 2012, A &A, 546, 69

    Google Scholar 

  • Masda S., Al-Wardat M. 2023, Advances in Space Research, 72, 649

    Article  ADS  Google Scholar 

  • Mason B. D., Wycoff G. L., Hartkopf W. I. 2022, The Washington Double Star Catalog

  • Mendez R. A., Claveria R. M., Orchard M. E., Silva J. F. 2017, AJ, 154, 187

    Article  ADS  Google Scholar 

  • Miller J. A., Pitman J. H. 1922, AJ, 34, 127

    Article  ADS  Google Scholar 

  • Perryman M. 2008, Astronomical Applications of Astrometry: Ten Years of Exploitation of the Hipparcos Satellite Data, Cambridge University Press, ISBN 9780521514897, https://doi.org/10.1017/CBO9780511575242

  • Privault N. 2013, Understanding Markov Chains. Springer Undergraduate Mathematics Series, Springer Singapore, https://doi.org/10.1007/978-981-13-0659-4

  • R Core Team 2021, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Ribas I., Arenou F., Guinan E. F. 2002, AJ, 123, 2033

    Article  ADS  Google Scholar 

  • Ricker G. R. Winn J. N., Vanderspek R. et al. 2014, Proc. SPIE, Vol. 9143, https://doi.org/10.1117/12.2063489

  • Sahlmann J., Lazorenko P. F., Ségransan D. et al. 2013, A &A, 556, A133

    Google Scholar 

  • Sinharay S., 2003, Assessing Convergence of the Markov Chain Monte Carlo Algorithm: A Review, ETS Research Report Series, i-52

  • Stan Development Team 2021, RStan: the R interface to Stan, http://mc-stan.org/

  • van Leeuwen F. 2007, A &A, 474, 653

    ADS  Google Scholar 

  • van Ravenzwaaij D., Cassey P., Brown S. D. 2018, Psychon. Bull. Rev., 25, 143. https://doi.org/10.3758/s13423-016-1015-8

    Article  PubMed  Google Scholar 

  • Worley C. E., Heintz W. D. 1983, The Fourth Catalog of Orbits of Visual Binary Stars, Publ. US Nav. Obs., 2d Ser., 24, Part 7 (Washington: GPO)

Download references

Acknowledgements

This research has used the Washington Double Star (WDS) Catalog maintained at the US Naval Observatory. We thank Dr Rachel Matson for extracting data from the WDS for us. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, particularly the institutions participating in the Gaia Multilateral Agreement. We thank the University of Queensland for the collaboration software. We thank the anonymous referee for their helpful comments and guidance, which improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Banks.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ersteniuk, M., Banks, T., Budding, E. et al. Markov Chain Monte Carlo optimization applied to double stars from Miller & Pitman research. J Astrophys Astron 45, 9 (2024). https://doi.org/10.1007/s12036-024-09997-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-024-09997-5

Keywords

Navigation