Skip to main content
Log in

Long-term spectroscopic monitoring of comet 46P/Wirtanen

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

Jupiter family comets, having an orbital period <20 years, allow us to observe their activity and analyze the homogeneity in their coma composition over multiple apparitions. Comet 46P/Wirtanen, with its exceptionally close approach to Earth during its 2018 apparition, offered the possibility for long-term spectroscopic observations. We used a 1.2 m telescope equipped with a low-resolution spectrograph to monitor the comet’s activity and compute the relative abundances in the coma as a function of heliocentric distance. We report the production rates of four molecules CN, C\(_2\), C\(_3\) and NH\(_2,\) and Af\(\rho \) parameter, a proxy to the dust production, before and after perihelion. We found that 46P has a typical coma composition with almost constant abundance ratios with respect to CN across the epochs of observation. Comparing the coma composition of comet 46P during the current and previous apparitions, we conclude the comet has a highly homogeneous chemical composition in the nucleus with an enhancement in ammonia abundance compared to the average abundance in comets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://www.shelyak.com/produit/pf0021vis-lisa-slit-vis.

  2. https://ssd.jpl.nasa.gov/horizons.cgi.

  3. Composite dust phase function for comets: https://asteroid.lowell.edu/comet/dustphaseHM_table.txt.

References

  • A’Hearn M. F., Millis R. C., Schleicher D. O., Osip D. J., Birch P. V. 1995, Icarus, 118, 223

    Article  ADS  Google Scholar 

  • A’Hearn M. F., Schleicher D. G., Millis R. L., Feldman P. D., Thompson D. T. 1984, AJ, 89, 579

  • Aravind K., Ganesh S., Venkataramani K. et al. 2021, MNRAS, 502, 3491

    Article  ADS  CAS  Google Scholar 

  • Aravind K., Halder P., Ganesh S. et al. 2022, Icarus, 383, 115042

    Article  Google Scholar 

  • Bauer J. M., Gicquel A., Kramer E., Meech K. J. 2021, PSJ, 2, 34

    Article  ADS  Google Scholar 

  • Cochran A. L., Barker E. S., Gray C. L. 2012, Icarus, 218, 144

    Article  ADS  CAS  Google Scholar 

  • Combi M. R., Mäkinen T., Bertaux J. L. et al. 2020, PSJ, 1, 72

  • Farnham T. L., Knight M. M., Schleicher D. G. et al. 2021, PSJ, 2, 7

    Article  ADS  Google Scholar 

  • Farnham T. L., Schleicher D. G. 1998, A &A, 335, L50

    ADS  CAS  Google Scholar 

  • Farnham T. L., Schleicher D. G., A’Hearn M. F. 2000, Icarus, 147, 180

    Article  ADS  CAS  Google Scholar 

  • Fink U. 2009, Icarus, 201, 311

    Article  ADS  CAS  Google Scholar 

  • Fink U., Hicks M. D. 1996, ApJ, 459, 729

    Article  ADS  CAS  Google Scholar 

  • Fink U., Hicks M. D., Fevig R. A., Collins J. 1998, A &A, 335, L37

    ADS  CAS  Google Scholar 

  • Haser L. 1957, Bulletin de la Societe Royale des Sciences de Liege, 43, 740

    ADS  MathSciNet  Google Scholar 

  • Ivanova O., Luk’yanyk I., Tomko D., Moiseev A. 2021, MNRAS, 507, 5376

    Article  ADS  CAS  Google Scholar 

  • Jockers K., Credner T., Bonev T. 1998, A &A, 335, L56

  • Kawakita H., Watanabe J.-I. 2002, ApJ, 572, L177

    Article  ADS  Google Scholar 

  • Kelley M. S. P., Farnham T. L., Li J.-Y. et al. 2021, PSJ, 2, 131

  • Kidger M. R. 2004, A &A, 420, 389

    ADS  Google Scholar 

  • Knight M. M., Schleicher D. G., Farnham T. L. 2021, PSJ, 2, 104

    Article  ADS  Google Scholar 

  • Krasnopolsky V. A., Tkachuk A. Y. 1991, AJ, 101, 1915

  • Lamy P. L., Toth I., Jorda L., Weaver H. A., A’Hearn M. 1998, A &A, 335, L25

    ADS  Google Scholar 

  • Langland-Shula L. E., Smith G. H. 2011, Icarus, 213, 280

    Article  ADS  CAS  Google Scholar 

  • Lee S., Pak S. 2006, Journal of Korean Astronomical Society, 39, 151

  • Levison H. F., Duncan M. J. 1997, Icarus, 127, 13

    Article  ADS  Google Scholar 

  • McKay A. J., DiSanti M. A., Cochran A. L. et al. 2021, PSJ, 2, 21

    Article  ADS  Google Scholar 

  • Moulane Y., Jehin E., Manfroid J. et al. 2023, A &A, 670, A159

    CAS  Google Scholar 

  • Noonan J. W., Harris W. M., Bromley S. et al. 2021, PSJ, 2, 8

  • Protopapa S., Kelley M. S. P., Woodward C. E., Yang B. 2021, PSJ, 2, 176

    ADS  Google Scholar 

  • Rettig T. W., Tegler S. C., Wyckoff S., et al. 1992, in Asteroids, Comets, Meteors 1991, eds Harris A. W., Bowell E., p. 505

  • Rosenbush V., Kiselev N., Husárik M. et al. 2021, MNRAS, 503, 4297

    ADS  Google Scholar 

  • Roth N. X., Milam S. N., Cordiner M. A. et al. 2021, PSJ, 2, 55

  • Schleicher D. G. 2010, AJ, 140, 973

  • Schleicher D. G. 2022, PSJ, 3, 143

    ADS  Google Scholar 

  • Schleicher D. G., Bair A. N. 2011, AJ, 141, 177

  • Schulz R. 2005, Highlights of Astronomy, 13, 743

    Article  ADS  Google Scholar 

  • Schulz R., Arpigny C., Manfroid J. et al. 1998, A &A, 335, L46

  • Shinnaka Y., Kawakita H., Jehin E. et al. 2016a, MNRAS, 462, S195

  • Shinnaka Y., Kawakita H., Jehin E. et al. 2016b, MNRAS, 462, S124

  • Slanger T. G., Black G. 1982, J. Chem. Phys., 77, 2432

  • Tegler S., Wyckoff S. 1989, ApJ, 343, 445

    Article  ADS  CAS  Google Scholar 

  • Tegler S. C., Burke L. F., Wyckoff S. et al. 1992, ApJ, 384, 292

    Article  ADS  CAS  Google Scholar 

  • Venkataramani K., Ghetiya S., Ganesh S. et al. 2016, MNRAS, 463, 2137

    Article  ADS  CAS  Google Scholar 

  • Wyckoff S., Tegler S., Wehinger P. A., Spinrad H., Belton M. J. S. 1988, ApJ, 325, 927

    Article  ADS  CAS  Google Scholar 

  • Zheltobryukhov M., Zubko E., Chornaya E. et al. 2020, MNRAS, 498, 1814

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the local staff at the Mount Abu Observatory for their help in making these observations possible. Work at the Physical Research Laboratory is supported by the Department of Space, Government of India. Emmanuel Jehin is a FNRS Senior Research Associate. TRAPPIST is a project funded by the Belgian Fonds (National) de la Recherche Scientifique (FRS-FNRS) under grant T.0120.21. This work is a result of the bilateral Belgo-Indian projects on Precision Astronomical Spectroscopy for Stellar and Solar system bodies, BIPASS, funded by the Belgian Federal Science Policy Office (BELSPO, Government of Belgium; BL/33/IN22_BIPASS) and the International Division, Department of Science and Technology, (DST, Government of India; DST/INT/BELG/P-01/2021(G)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Aravind.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aravind, K., Venkataramani, K., Ganesh, S. et al. Long-term spectroscopic monitoring of comet 46P/Wirtanen. J Astrophys Astron 45, 11 (2024). https://doi.org/10.1007/s12036-024-09996-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-024-09996-6

Keywords

Navigation