Skip to main content
Log in

Spectroscopy of nine eruptive young variables using TANSPEC

  • PRE-MAIN SEQUENCE STARS
  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

In recent times, 3.6m Devasthal Optical Telescope (DOT) has been installed with an optical to near infra-red spectrograph, TANSPEC, which provides spectral coverage from 0.55 to 2.5 microns. Using TANSPEC, we have obtained a single epoch spectrum of a set, containing nine FUors and EXors. We have analysed line profiles of the sources and compared them with the previously published spectra of these objects. Comparing the line profile shapes with the existing theoretical predictions, we have tried to interpret the physical processes that are responsible for the current disc evolution and the present accretion dynamics. Our study has shown the importance of time-evolved spectroscopic studies for a better understanding of the evolution of the accretion a mechanisms. This in turn can help in the better characterization of the young stars displaying episodic accretion behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://github.com/astrosupriyo/pyTANSPEC.

  2. IRAF is distributed by National Optical Astronomy Observatories, USA, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with National Science Foundation for performing image processing.

  3. UXor-type variability arises due to occultation of the central YSO by the matter present in the circumstellar disc.

References

  • Alcalá J. M., Natta A., Manara C. F. et al. 2014, A &A, 561, A2

    Google Scholar 

  • , Antoniucci S., Nisini B., Biazzo K. et al. 2017, A &A, 606, A48

    Google Scholar 

  • Armitage P. J., Livio M., Pringle J. E. 2001, MNRAS, 324, 705

    Article  ADS  Google Scholar 

  • Aspin C. 2011, AJ, 141, 196

  • Audard M., Ábrahám P., Dunham M. M., et al. 2014, in Protostars and Planets VI, eds Beuther H., Klessen R. S., Dullemond C. P., Henning T., p. 387

  • Bally J., Reipurth B., Davis C. J. 2007, in Protostars and Planets V, eds Reipurth B., Jewitt D., Keil K., p. 215

  • Bell K. R., Lin D. N. C. 1994, ApJ, 427, 987

    Article  ADS  Google Scholar 

  • Bonnell I., Bastien P. 1992, ApJ, 401, L31

    Article  ADS  Google Scholar 

  • Calvet N., Patino A., Magris G. C., D’Alessio P. 1991, ApJ, 380, 617

    Article  ADS  Google Scholar 

  • Connelley M. S., Reipurth B. 2018, ApJ, 861, 145

    Article  ADS  Google Scholar 

  • D’Angelo C. R. 2012, MNRAS, 420, 416

    Article  ADS  Google Scholar 

  • D’Angelo C. R., Spruit H. C. 2010, MNRAS, 406, 1208

    ADS  Google Scholar 

  • Davis C. J., Gell R., Khanzadyan T., Smith M. D., Jenness T. 2010, A &A, 511, A24

    Google Scholar 

  • Davis C. J., Whelan E., Ray T. P., Chrysostomou A. 2003, A &A, 397, 693

    ADS  Google Scholar 

  • Edwards S., Fischer W., Kwan J., Hillenbrand L., Dupree A. K. 2003, ApJ, 599, L41

    Article  ADS  Google Scholar 

  • Folha D., Emerson J., Calvet N. 1997, in Herbig-Haro Flows and the Birth of Stars, eds Reipurth B., Bertout C., Vol. 182, p. 272

  • Garcia J. G., Parsamian E. S., Akopian A. A. 2020, Astrophysics. https://doi.org/10.1007/s10511-020-09661-0

    Article  Google Scholar 

  • Ghosh A., Sharma S., Ninan J. P. et al. 2022, ApJ, 926, 68

    Article  ADS  Google Scholar 

  • Giannini T., Lorenzetti D., Antoniucci S. et al. 2016, ApJ, 819, L5

    Article  ADS  Google Scholar 

  • Giannini T., Munari U., Antoniucci S. et al. 2018, A &A, 611, A54

    Google Scholar 

  • Giannini T., Antoniucci S., Lorenzetti D. et al. 2017, ApJ, 839, 112

    Article  ADS  Google Scholar 

  • Hamann F., Persson S. E. 1992, ApJS, 82, 247

    Article  ADS  Google Scholar 

  • Hartmann L. 1998, Accretion Processes in Star Formation

  • Hartmann L., Calvet N., Avrett E. H., Loeser R. 1990, ApJ, 349, 168

    Article  ADS  Google Scholar 

  • Hartmann L., Herczeg G., Calvet N. 2016, ARA &A, 54, 135

  • Hartmann L., Kenyon S. J. 1996, ARA &A, 34, 207

    ADS  Google Scholar 

  • Herbig G. 1966, Vistas in Astronomy 8, 109

    Article  ADS  Google Scholar 

  • Herbig G. H. 1977, ApJ, 217, 693

    Article  ADS  Google Scholar 

  • Hillenbrand L. 2014, The Astronomer’s Telegram 6797, 1

  • Hillenbrand L. A., Reipurth B., Connelley M., Cutri R. M., Isaacson H. 2019, AJ, 158, 240

  • Hillenbrand L. A., Miller A. A., Covey K. R., et al. 2013, AJ, 145, 59

  • Hillenbrand L. A., Contreras Peña. C., Morrell S. et al. 2018, ApJ, 869, 146

    Article  ADS  Google Scholar 

  • Hodapp K. W., Reipurth B., Pettersson B., et al. 2019, AJ, 158, 241

  • Hodapp K. W., Denneau L., Tucker M., et al. 2020, AJ, 160, 164

  • Hodgkin S. T., Wyrzykowski L., Blagorodnova N., Koposov S. 2013, Philosophical Transactions of the Royal Society of London Series A 371, 20120239

    ADS  Google Scholar 

  • Ibryamov S., Semkov E. 2021, Bulgarian Astronomical Journal, 35, 54

    ADS  Google Scholar 

  • Jurdana-Šepić R., Munari U. 2016, New A, 43, 87

    Article  ADS  Google Scholar 

  • Kóspál Á., Szabó Z. M., Ábrahám P. et al. 2020, ApJ, 889, 148

    Article  ADS  Google Scholar 

  • Kóspál Á., Ábrahám P., Goto M. et al. 2011, ApJ, 736, 72

    Article  ADS  Google Scholar 

  • Kumar B., Omar A., Maheswar G. et al. 2018, Bulletin de la Societe Royale des Sciences de Liege, 87, 29

    ADS  Google Scholar 

  • Kun M., Obayashi A., Sato F. et al. 1994, A &A, 292, 249

    ADS  Google Scholar 

  • Lombardi M., Alves J., Lada C. J. 2011, A &A, 535, A16

    Google Scholar 

  • Lorenzetti D., Larionov V. M., Giannini T. et al. 2009, ApJ, 693, 1056

    Article  ADS  Google Scholar 

  • Lorenzetti D., Antoniucci S., Giannini T. et al. 2015, ApJ, 802, 24

    Article  ADS  Google Scholar 

  • Magakian T. Y., Nikogossian E. H., Movsessian T. et al. 2013, MNRAS, 432, 2685

    Article  ADS  Google Scholar 

  • McGregor P. J., Hillier D. J., Hyland A. R. 1988, ApJ, 334, 639

    Article  ADS  Google Scholar 

  • Munari U., Traven G., Dallaporta S. et al. 2017, The Astronomer’s Telegram, 10183, 1

    ADS  Google Scholar 

  • Mutafov A., Semkov E., Peneva S., Ibryamov S. 2022, Long-term Photometric Study of the Pre-main Sequence Star V1180 Cas, https://doi.org/10.48550/ARXIV.2210.09660

  • Muzerolle J., Hartmann L., Calvet N. 1998, AJ, 116, 455

  • Najita J., Carr J. S., Glassgold A. E., Shu F. H., Tokunaga A. T. 1996, ApJ, 462, 919

    Article  ADS  Google Scholar 

  • Ninan J. P., Ojha D. K., Baug T. et al. 2015, ApJ, 815, 4

  • Park S., Lee J.-E., Pyo T.-S. et al. 2020, ApJ, 900, 36

    Article  ADS  Google Scholar 

  • Park S., Kóspál Á., Cruz-Sáenz de Miera F., et al. 2021, ApJ, 923, 171

  • Reipurth B. 2004, ApJ, 608, L65

    Article  ADS  Google Scholar 

  • Reipurth B., Aspin C. 1997, AJ, 114, 2700

  • Reipurth B., Aspin C., Beck T., et al. 2007, AJ, 133, 1000

  • Reipurth B., Connelley M. S. 2015, The Astronomer’s Telegram 6862, 1

    ADS  Google Scholar 

  • Safron E. J., Fischer W. J., Megeath S. T. et al. 2015, ApJ, 800, L5

    Article  ADS  Google Scholar 

  • Sharma S., Ojha D. K., Ghosh A. et al. 2022, PASP, 134, 085002

    Article  ADS  Google Scholar 

  • Szegedi-Elek E., Ábrahám P., Wyrzykowski Ł et al. 2020, ApJ, 899, 130

    Article  ADS  Google Scholar 

  • Takagi Y., Honda S., Arai A., et al. 2018, AJ, 155, 101

  • Takagi Y., Honda S., Arai A., Takahashi J., Oasa Y. 2020, ApJ, 904, 53

    Article  ADS  Google Scholar 

  • Vorobyov E., Basu S. 2006, ApJ, 650, 956

    Article  ADS  Google Scholar 

  • Vorobyov E. I., Basu S. 2005, ApJ, 633, L137

    Article  ADS  Google Scholar 

  • Wachmann A. 1954, Zeitschrift für Astrophysik, 35, 74

    ADS  Google Scholar 

  • Wils P., Greaves J., Drake A. J., Catelan M. 2009, Central Bureau Electronic Telegrams, 2033, 1

    ADS  Google Scholar 

  • Zhu Z., Hartmann L., Gammie C., McKinney J. C. 2009, ApJ, 701, 620

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewer for valuable comments, which greatly improved the scientific content of the paper. TIFR–ARIES Near Infrared Spectrometer (TANSPEC) was built in collaboration with TIFR, ARIES and MKIR, Hawaii, for the DOT. We thank the staff at the 3.6m DOT, Devasthal (ARIES), for their co-operation during observations. It is a pleasure to thank the members of 3.6m DOT team and IR astronomy group at TIFR for their support during TANSPEC observations. SS acknowledges the support of the Department of Science and Technology, Government of India, under project no. DST/INT/Thai/P-15/2019. DKO acknowledges the support of the Department of Atomic Energy, Government of India, under project identification no. RTI 4002. JPN and DKO acknowledge the support of the Department of Atomic Energy, Government of India, under project identification no. RTI 4002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpan Ghosh.

Additional information

This article is part of the Special Issue on “Star formation studies in the context of NIR instruments on 3.6m DOT”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Sharma, S., Ninan, J.P. et al. Spectroscopy of nine eruptive young variables using TANSPEC. J Astrophys Astron 44, 50 (2023). https://doi.org/10.1007/s12036-023-09939-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-023-09939-7

Keywords

Navigation