Skip to main content

Advertisement

Log in

Pulsars in AstroSat-CZTI: detection in sub-MeV bands and estimation of spectral index from hardness ratios

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

The Cadmium Zinc Telluride Imager (CZTI) onboard AstroSat, an open detector above \(\sim \)100 keV, is a promising tool for the investigation of hard X-ray characteristics of \(\gamma \)-ray pulsars. A custom algorithm has been developed to detect pulsars from long integration (\(\sim \)years) of archival data, as reported by us earlier. Here, we extend this method in the analysis to include additional \(\sim \)20% of the CZTI pixels that were earlier ignored due to their lower gain values. Recent efforts have provided better and more secure calibration of these pixels, demonstrating their higher thresholds and extended energy range up to \(\sim \)1 MeV. Here, we use the additional information provided by these pixels, enabling the construction of pulse profiles over a larger energy range. We compare the profiles of the Crab pulsar at different sub-bands and show that the behavior is consistent with the extended energy coverage. As detailed spectroscopy over this full band remains difficult due to the limited count rate, we construct hardness ratios which, together with AstroSat mass model simulations, are able to constrain the power-law index of the radiation spectrum. We present our results for the phase-resolved spectrum of PSR J0534\(+\)2200 and for the total pulsed emission of PSR J1513−5908. The recovered photon indices are found to be accurate within \({\sim }20\)%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. https://confluence.slac.stanford.edu/display/GLAMCOG/Public+List+of+LAT-Detected+Gamma-Ray+Pulsars.

  2. https://asd.gsfc.nasa.gov/Craig.Markwardt//bat-cal/hardness-ratio/.

  3. https://asd.gsfc.nasa.gov/Craig.Markwardt//bat-cal/hardness-ratio/.

References

  • Abdo A. A., Ackermann M., Ajello M. et al. 2010, The Astrophysical Journal, 720, 272

    Article  ADS  Google Scholar 

  • Abdo A. A., Ajello M., Allafort A. et al. 2013, The Astrophysical Journal Supplement Series, 208, 17

    Article  ADS  Google Scholar 

  • Anusree K. G., Bhattacharya D., Rao A. R. et al. 2021 Journal of Astrophysics and Astronomy, 42, 63

    Article  ADS  Google Scholar 

  • Anusree K. G., Bhattacharya D. 2022, Hard X-ray pulsars: A picture from the AstroSat — CZTI 44\(^{\rm {th}}\) COSPAR Scientific Assembly Held 16–24 July, 44, 2263

  • Arnaud K. 1996, in Astronomical Data Analysis Software and Systems V, 101, 17c

  • Arons J., Scharlemann E. T. 1979, Astrophysical Journal, 231, 854

    Article  ADS  Google Scholar 

  • Bai X., Spitkovsky A. 2010, Astrophysical Journal, 715, 1282

    Article  ADS  Google Scholar 

  • Bhalerao V., Bhattacharya D., Vibhute A. et al. 2017, Journal of Astrophysics and Astronomy, 38, 31

    Article  ADS  Google Scholar 

  • Chattopadhyay T., Vadawale S. V., Aarthy E. et al. 2019, The Astrophysical Journal, 884, 123

    Article  ADS  Google Scholar 

  • Chattopadhyay T., Gupta S., Sharma V. et al. 2021, Journal of Astrophysics and Astronomy, 42, 82

    Article  ADS  Google Scholar 

  • Cheng K. S., Ho C., Ruderman M. 1986a, Astrophysical Journal, 300, 500

    Article  ADS  Google Scholar 

  • Cheng K. S., Ho C., Ruderman M. 1986b, Astrophysical Journal, 300, 522

    Article  ADS  Google Scholar 

  • Cheng K. S., Ruderman M., Zhang L. 2000, The Astrophysical Journal, 537, 964

    Article  ADS  Google Scholar 

  • Clark C. J., Wu J., Pletsch H. J. et al. 2017, The Astrophysical Journal, 834, 106

    Article  ADS  Google Scholar 

  • Dyks J., Rudak B. 2003, Astrophysical Journal, 598, 1201

    Article  ADS  Google Scholar 

  • Gunji S., Hiramaya M., Kamae T. et al. 1994, The Astrophysical Journal, 428, 284

    Article  ADS  Google Scholar 

  • Hobbs G. B., Edwards R. T., Manchester R. N. 2006, Monthly Notices of the Royal Astronomical Society, 369, 655

    Article  ADS  Google Scholar 

  • Kerr M., Ray P. S., Johnston S. et al. 2015, The Astrophysical Journal, 814, 128

    Article  ADS  Google Scholar 

  • Kirk J. G., Skjaeraasen O., Gallant Y. 2002, Astronomy & Astrophysics, 388, L29

    Article  ADS  Google Scholar 

  • Kuiper L., Hermsen W., Cusumano G. et al. 2001, Astronomy & Astrophysics, 378, 918

    Article  ADS  Google Scholar 

  • Lin L., Hui C., Hu C. et al. 2013, The Astrophysical Journal Letters, 770, L9

    Article  ADS  Google Scholar 

  • Lockhart W., Gralla S. E., Özel F., Psaltis D. 2019, Monthly Notices of the Royal Astronomical Society, 490, 1774

    Article  ADS  Google Scholar 

  • Massaro E., Campana R., Cusumano G. et al. 2006, Astronomy & Astrophysics, 459, 859

    Article  ADS  Google Scholar 

  • Mate S., Chattopadhyay T., Bhalerao V. et al. 2021, Journal of Astrophysics and Astronomy, 42, 93

    Article  ADS  Google Scholar 

  • Paul B. 2013, International Journal of Modern Physics D, 22, 41009

    Article  ADS  Google Scholar 

  • Pétri J. 2012, Monthly Notices of the Royal Astronomical Society, 424, 2023

    Article  ADS  Google Scholar 

  • Pétri J., Mitra D. 2020, Monthly Notices of the Royal Astronomical Society, 491, 80

    Article  ADS  Google Scholar 

  • Philippov A. A., Spitkovsky A. 2018, Astrophysical Journal, 855, 94

    Article  ADS  Google Scholar 

  • Pierbattista M., Harding A. K., Grenier I. A. et al. 2015, Astronomy & Astrophysics, 575, A3

    Article  Google Scholar 

  • Rao A. R., Chand V., Hingar M. K. et al. 2016, The Astrophysical Journal, 833, 86

    Article  ADS  Google Scholar 

  • Ray P. S., Kerr M., Parent D. et al. 2011, The Astrophysical Journal Supplement Series, 194, 17

    Article  ADS  Google Scholar 

  • Romani R., Yadigaroglu I.-A. 1995, Astrophysical Journal, 438, 314

    Article  ADS  Google Scholar 

  • Seyffert A. S., Venter C., De Jager O. C., Harding A. K. 2011, arXiv:1105.4094

  • Singh K. P., Tandon S. N., Agrawal P. C. et al. 2014, SPIE, 9144E, 1S

    Google Scholar 

  • Takata J., Chang H.-K., Cheng K. S. 2007, Astrophysical Journal, 656, 1044

    Article  ADS  Google Scholar 

  • Tang A. P. S., Takata J., Jia J. J. et al. 2008, Astrophysical Journal, 676, 562

    Article  ADS  Google Scholar 

  • Tuo, You-Li, Ge, Ming-Yu, Song, Li-Ming, et al. 2019, Reseach in Astronomy and Astrophysics, 19, 087

  • Ulmer M. P., Matz S. M., Grabelsky D. A., et al. 1995, The Astrophysical Journal, 448, 356

Download references

Acknowledgements

We thank the anonymous referee for comments and suggestions that significantly improved the paper. This work uses data from the Indian astronomy mission AstroSat, archived at the Indian Space Science Data Centre (ISSDC). The instrument CZTI was built by a TIFR-led consortium of institutes across India, including VSSC, IUCAA, URSC, PRL and SAC. The Indian Space Research Organization funded, facilitated and managed the project. We extend our acknowledgement to the team members of the CZTI POC at IUCAA for helping with the aggregation of data. We also thank Fermi timing observers, Paul Ray and Matthew Kerr for their timely and favorable response in providing LAT ephemeris for the pulsars. We thank the HPC facility at IUCAA, where we carried out all the data analysis. Anusree acknowledges support for this work from the DST-INSPIRE Fellowship grant, IF170239, under the Ministry of Science and Technology, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Anusree.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anusree, K.G., Bhattacharya, D., Bhalerao, V. et al. Pulsars in AstroSat-CZTI: detection in sub-MeV bands and estimation of spectral index from hardness ratios. J Astrophys Astron 43, 91 (2022). https://doi.org/10.1007/s12036-022-09886-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-022-09886-9

Keywords

Navigation