Abstract
BL Lacertae (BL Lac) object OJ 287 is one of the most dynamic blazars across the directly accessible observational windows: spectral, timing, polarization and imaging. Apart from behaviors, considered the characteristics of blazars, it exhibits peculiar timing features like quasi-periodicity in optical flux as well as radio-detected knots position and has shown diverse transient spectral features like a new broadband continuum dominated activity phase, Seyfert-like soft-X-ray excess, highly transient iron line absorption feature, a thermal-like continuum-dominated optical phase, large optical polarization swings associated with one of the timing features, etc., that are rare in blazars and contrary to currently prevailing view of BL Lacs. Theoretical considerations, supported by existing observations invoke scenarios involving a dynamical interplay of accretion and/or strong-gravity-induced events (tidal forces) in a binary supermassive black hole (SMBH) scenario to impact-induced jet and only jet activities. Many of these scenarios have some definite and quite distinctive observationally testable predictions/claims. These considerations make OJ 287 the only BL Lac to have an activity phase with dominance related to accretion and/or accretion-perturbation-induced jet activities. We present a brief overview of the unique spectral features and discuss the potential of these features in exploring not only relativistic jet physics, but also issues pertaining to accretion and accretion-regulated jet activities, i.e., the whole spectrum of issues related to the jet-accretion paradigm.
This is a preview of subscription content, access via your institution.




Notes
Note ‘simultaneous’ here is a misnomer, but often used in the literature. Different sensitivities in different energy bands bar a truly simultaneous multi-wavelength observation.
Recently, Roychowdhury et al. (2021) reported an IR-torus for the first-time in a BL Lac source, but it is located at much longer distance from the central SMBH than the scale expected in the standard AGN paradigm.
Variability is seen only in the SMARTS facility K-band data and is not in sync with variability seen in other NIR-optical bands and neither with the NIR data from INAOE, Mexico (Gupta et al. 2022) and thus, extreamly unusual. Further, it seems to persist for almost one season of observation from the SMARTS facility (MJD: \(\sim \)55500–55715).
Used >1 GeV light curve.
Gamma-ray too, but the weakness of the source do not allow short-time evolution history like those of optical to X-rays.
References
Abdo A. A., Ackermann M., Agudo I., et al. 2010, ApJ, 716, 30. https://doi.org/10.1088/0004-637X/716/1/30
Agudo I., Jorstad S. G., Marscher A. P., et al. 2011, ApJ, 726, L13. https://doi.org/10.1088/2041-8205/726/1/L13
Ahnen M. L., Ansoldi S., Antonelli L. A., et al. 2018, A &A, 620, A181. https://doi.org/10.1051/0004-6361/201833704
Anglada G., Rodríguez L. F., Carrasco-González C. 2018, A &A Rev., 26, 3. https://doi.org/10.1007/s00159-018-0107-z
Bhattacharyya S., Ghosh R., Chatterjee R., et al. 2020, ApJ, 897, 25. https://doi.org/10.3847/1538-4357/ab91a8
Blandford R., Meier D., Readhead A. 2019, ARA &A, 57, 467. https://doi.org/10.1146/annurev-astro-081817-051948
Blinov D., Pavlidou V., Papadakis I., et al. 2018, MNRAS, 474, 1296. https://doi.org/10.1093/mnras/stx2786
Blinov D., Pavlidou V. 2019, Galaxies, 7, 46. https://doi.org/10.3390/galaxies7020046
Böttcher M., Reimer A., Sweeney K., et al. 2013, ApJ, 768, 54. https://doi.org/10.1088/0004-637X/768/1/54
Boula S., Kazanas D., Mastichiadis A. 2019, MNRAS, 482, L80. https://doi.org/10.1093/mnrasl/sly189
Brien S. O., VERITAS Collaboration 2017, 35th International Cosmic Ray Conference (ICRC2017), 301, 650
Britzen S., Fendt C., Witzel G., et al. 2018, MNRAS, 478, 3199. https://doi.org/10.1093/mnras/sty1026
Butuzova M. S., Pushkarev A. B. 2020, Universe, 6, 191. https://doi.org/10.3390/universe6110191
Cohen M. 2017, Galaxies, 5, 12. https://doi.org/10.3390/galaxies5010012
de Jager O. C., Harding A. K., Michelson P. F., et al. 1996, ApJ, 457, 253. https://doi.org/10.1086/176726
Dey L., Valtonen M. J., Gopakumar A., et al. 2018, ApJ, 866, 11. https://doi.org/10.3847/1538-4357/aadd95
Dey L., Valtonen M. J., Gopakumar A., et al. 2021, MNRAS, 503, 4400. https://doi.org/10.1093/mnras/stab730
Domínguez A., Primack J. R., Rosario D. J., et al. 2011, MNRAS, 410, 2556. https://doi.org/10.1111/j.1365-2966.2010.17631.x
Event Horizon Telescope Collaboration, Akiyama K., Alberdi A., et al. 2019a, ApJ, 875, L1. https://doi.org/10.3847/2041-8213/ab0ec7
Event Horizon Telescope Collaboration, Akiyama K., Alberdi A., et al. 2019b, ApJ, 875, L5. https://doi.org/10.3847/2041-8213/ab0f43
Finke J. D. 2013, ApJ, 763, 134. https://doi.org/10.1088/0004-637X/763/2/134
Gao S., Fedynitch A., Winter W., et al. 2019, Nature Astronomy, 3, 88. https://doi.org/10.1038/s41550-018-0610-1
Ghisellini G., Tavecchio F., Maraschi L., et al. 2014, Nature, 515, 376. https://doi.org/10.1038/nature13856
Ghisellini G., Righi C., Costamante L., et al. 2017, MNRAS, 469, 255. https://doi.org/10.1093/mnras/stx806
Goyal A., Stawarz, Ł., Zola S., et al. 2018, ApJ, 863, 175. https://doi.org/10.3847/1538-4357/aad2de
Goyal A. 2021, ApJ, 909, 39. https://doi.org/10.3847/1538-4357/abd7fb
Granot J., van der Horst A. J. 2014, PASA, 31, e008. https://doi.org/10.1017/pasa.2013.44
Gupta A. C., Agarwal A., Mishra A., et al. 2017, MNRAS, 465, 4423. https://doi.org/10.1093/mnras/stw3045
Gupta A. C., Gaur H., Wiita P. J., et al. 2019, AJ, 157, 95. https://doi.org/10.3847/1538-3881/aafe7d
Gupta A. C., Kushwaha P., Carrasco L., et al. 2022, ApJS, 260, 39. https://doi.org/10.3847/1538-4365/ac6c2c
Hayashida M., Nalewajko K., Madejski G. M., et al. 2015, ApJ, 807, 79. https://doi.org/10.1088/0004-637X/807/1/79
Hervet O., Boisson C., Sol H. 2016, A &A, 592, A22. https://doi.org/10.1051/0004-6361/201628117
Hodgson J. A., Krichbaum T. P., Marscher A. P., et al. 2017, A &A, 597, A80. https://doi.org/10.1051/0004-6361/201526727
Huang S., Hu S., Yin H., et al. 2021, ApJ, 920, 12. https://doi.org/10.3847/1538-4357/ac0eff
Hudec R., Bašta M., Pihajoki P., et al. 2013, A &A, 559, A20. https://doi.org/10.1051/0004-6361/201219323
Isobe N., Tashiro M., Sugiho M., et al. 2001, PASJ, 53, 79. https://doi.org/10.1093/pasj/53.1.79
Joshi M., Böttcher M. 2011, ApJ, 727, 21. https://doi.org/10.1088/0004-637X/727/1/21
Kapanadze B., Vercellone S., Romano P., et al. 2018, MNRAS, 480, 407. https://doi.org/10.1093/mnras/sty1803
Kiehlmann S., Savolainen T., Jorstad S. G., et al. 2016, A &A, 590, A10. https://doi.org/10.1051/0004-6361/201527725
Komossa S., Grupe D., Schartel N., et al. 2017, New Frontiers in Black Hole Astrophysics, 324, 168. https://doi.org/10.1017/S1743921317001648
Komossa S., Grupe D., Parker M. L., et al. 2020, MNRAS, 498, L35. https://doi.org/10.1093/mnrasl/slaa125
Komossa S., Grupe D., Parker M. L., et al. 2021, MNRAS, 504, 5575. https://doi.org/10.1093/mnras/stab1223
Kushwaha P., Sahayanathan S., Singh K. P. 2013, MNRAS, 433, 2380. https://doi.org/10.1093/mnras/stt904
Kushwaha P., Sahayanathan S., Lekshmi R., et al. 2014, MNRAS, 442, 131. https://doi.org/10.1093/mnras/stu836
Kushwaha P., Chandra S., Misra R., et al. 2016, ApJ, 822, L13. https://doi.org/10.3847/2041-8205/822/1/L13
Kushwaha P., Sinha A., Misra R., et al. 2017, ApJ, 849, 138. https://doi.org/10.3847/1538-4357/aa8ef5
Kushwaha P., Gupta A. C., Wiita P. J., et al. 2018a, MNRAS, 473, 1145. https://doi.org/10.1093/mnras/stx2394
Kushwaha P., Gupta A. C., Wiita P. J., et al. 2018b, MNRAS, 479, 1672. https://doi.org/10.1093/mnras/sty1499
Kushwaha P. 2020, Galaxies, 8, 15. https://doi.org/10.3390/galaxies8010015
Kushwaha P., Pal M. 2020, Galaxies, 8, 66. https://doi.org/10.3390/galaxies8030066
Kushwaha P., Sarkar A., Gupta A. C., et al. 2020, MNRAS, 499, 653. https://doi.org/10.1093/mnras/staa2899
Kushwaha P., Pal M., Kalita N., et al. 2021a, ApJ, 921, 18. https://doi.org/10.3847/1538-4357/ac19b8
Kushwaha P., Singh K. P., Sinha A., et al. 2021b, 37th International Cosmic Ray Conference—PoS(ICRC2021). 12–23 July 2021, 395, 644. https://doi.org/10.22323/1.395.0644
Laine S., Dey L., Valtonen M., et al. 2020, ApJ, 894, L1. https://doi.org/10.3847/2041-8213/ab79a4
Lehto H. J., Valtonen M. J. 1996, ApJ, 460, 207. https://doi.org/10.1086/176962
Liodakis I., Petropoulou M. 2020, ApJ, 893, L20. https://doi.org/10.3847/2041-8213/ab830a
Lister M. L., Aller M. F., Aller H. D., et al. 2013, AJ, 146, 120. https://doi.org/10.1088/0004-6256/146/5/120
Liu X., Wang X., Chang N., et al. 2021, Universe, 7, 15. https://doi.org/10.3390/universe7010015
Marscher A. P., Jorstad S. G., Larionov V. M., et al. 2010, ApJ, 710, L126. https://doi.org/10.1088/2041-8205/710/2/L126
Marscher A. P., Jorstad S. G. 2011, ApJ, 729, 26. https://doi.org/10.1088/0004-637X/729/1/26
Marscher A. P. 2014, ApJ, 780, 87. https://doi.org/10.1088/0004-637X/780/1/87
Murase K., Oikonomou F., Petropoulou M. 2018, ApJ, 865, 124. https://doi.org/10.3847/1538-4357/aada00
Nilsson K., Takalo L. O., Lehto H. J., et al. 2010, A &A, 516, A60. https://doi.org/10.1051/0004-6361/201014198
Oikonomou F., Murase K., Padovani P., et al. 2019, MNRAS, 489, 4347. https://doi.org/10.1093/mnras/stz2246
Pal M., Kushwaha P., Dewangan G. C., et al. 2020, ApJ, 890, 47. https://doi.org/10.3847/1538-4357/ab65ee
Peñil P., Domínguez A., Buson S., et al. 2020, ApJ, 896, 134. https://doi.org/10.3847/1538-4357/ab910d
Petropoulou M., Mastichiadis A. 2015, MNRAS, 447, 36. https://doi.org/10.1093/mnras/stu2364
Pian E., Vacanti G., Tagliaferri G., et al. 1998, ApJ, 492, L17. https://doi.org/10.1086/311083
Potter W. J. & Cotter G. 2012, MNRAS, 423, 756. https://doi.org/10.1111/j.1365-2966.2012.20918.x
Prince R., Agarwal A., Gupta N., et al. 2021a, A &A, 654, A38. https://doi.org/10.1051/0004-6361/202140708
Prince R., Raman G., Khatoon R., et al. 2021b, MNRAS, 508, 315. https://doi.org/10.1093/mnras/stab2545
Pursimo T., Takalo L. O., Sillanpää A., et al. 2000, A &AS, 146, 141. https://doi.org/10.1051/aas:2000264
Raiteri C. M., Villata M., Larionov V. M., et al. 2007, A &A, 473, 819. https://doi.org/10.1051/0004-6361:20078289
Raiteri C. M., Villata M., Acosta-Pulido J. A., et al. 2017, Nature, 552, 374. https://doi.org/10.1038/nature24623
Rodríguez-Ramírez J. C., Kushwaha P., de Gouveia Dal Pino E. M., et al. 2020, MNRAS, 498, 5424. https://doi.org/10.1093/mnras/staa2664
Rodríguez-Ramírez J. C., de Gouveia Dal Pino E. M., Rafael A. B., et al. 2021, 37th International Cosmic Ray Conference—PoS(ICRC2021). 12–23 July 2021, 395, 1016. https://doi.org/10.22323/1.395.1016
Romero G. E., Boettcher M., Markoff S., et al. 2017, Space Sci. Rev., 207, 5. https://doi.org/10.1007/s11214-016-0328-2
Roychowdhury A., Eileen E. T., Georganopoulos M., et al. 2021, 37th International Cosmic Ray Conference—PoS(ICRC2021). 12–23 July 2021, 395, 804. https://doi.org/10.22323/1.395.0804
Seta H., Isobe N., Tashiro M. S., et al. 2009, PASJ, 61, 1011. https://doi.org/10.1093/pasj/61.5.1011
Shukla A., Mannheim K., Patel S. R., et al. 2018, ApJ, 854, L26. https://doi.org/10.3847/2041-8213/aaacca
Sillanpaa A., Haarala S., Valtonen M. J., et al. 1988, ApJ, 325, 628. https://doi.org/10.1086/166033
Singh K. P., Kushwaha P., Sinha A., et al. 2022, MNRAS, 509, 2696. https://doi.org/10.1093/mnras/stab3161
Sinha A., Khatoon R., Misra R., et al. 2018, MNRAS, 480, L116. https://doi.org/10.1093/mnrasl/sly136
Sitko M. L., Junkkarinen V. T. 1985, PASP, 97, 1158. https://doi.org/10.1086/131679
Sobolewska M. A., Siemiginowska A., Kelly B. C., et al. 2014, ApJ, 786, 143. https://doi.org/10.1088/0004-637X/786/2/143
Stickel M., Fried J. W., Kuehr H. 1989, A &AS, 80, 103
Stickel M., Padovani P., Urry C. M., et al. 1991, ApJ, 374, 431. https://doi.org/10.1086/170133
Tavecchio F., Becerra-Gonzalez J., Ghisellini G., et al. 2011, A &A, 534, A86. https://doi.org/10.1051/0004-6361/201117204
Tavecchio F., Bonnoli G., Galanti G. 2020, MNRAS, 497, 1294. https://doi.org/10.1093/mnras/staa2055
Tetarenko B. E., Sivakoff G. R., Heinke C. O., et al. 2016, ApJS, 222, 15. https://doi.org/10.3847/0067-0049/222/2/15
Uchiyama Y., Urry C. M., Cheung C. C., et al. 2006, ApJ, 648, 910. https://doi.org/10.1086/505964
Valtonen M. J., Ciprini S., Lehto H. J. 2012, MNRAS, 427, 77. https://doi.org/10.1111/j.1365-2966.2012.21861.x
Valtonen M. J., Zola S., Ciprini S., et al. 2016, ApJ, 819, L37. https://doi.org/10.3847/2041-8205/819/2/L37
Visvanathan N., Elliot J. L. 1973, ApJ, 179, 721. https://doi.org/10.1086/151911
Zamaninasab M., Clausen-Brown E., Savolainen T., et al. 2014, Nature, 510, 126. https://doi.org/10.1038/nature13399
Zdziarski A. A., Sikora M., Pjanka P., et al. 2015, MNRAS, 451, 927. https://doi.org/10.1093/mnras/stv986
Zhang H., Chen X., Böttcher M. 2014, ApJ, 789, 66. https://doi.org/10.1088/0004-637X/789/1/66
Zhang H., Li X., Guo F., et al. 2018, ApJ, 862, L25. https://doi.org/10.3847/2041-8213/aad54f
Acknowledgements
PK acknowledges ARIES A-PDF funding (Grant: AO/A-PDF/770) and financial support from the Department of Science and Technology (DST), Government of India, through the DST-INSPIRE faculty grant (DST/INSPIRE/04/2020/002586). The work has made use of software, and/or web tools obtained from NASA’s High Energy Astrophysics Science Archive Research Center (HEASARC), a service of the Goddard Space Flight Center and the Smithsonian Astrophysical Observatory. This paper has made use of up-to-date SMARTS optical/near-infrared light curves that are available at http://www.astro.yale.edu/smarts/glast/home.php.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is part of the Special Issue on “Astrophysical Jets and Observational Facilities: A National Perspective”.
Rights and permissions
About this article
Cite this article
Kushwaha, P. BL Lac object OJ 287: exploring a complete spectrum of issues concerning relativistic jets and accretion. J Astrophys Astron 43, 79 (2022). https://doi.org/10.1007/s12036-022-09872-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12036-022-09872-1
Keywords
- BL Lac objects: individual: OJ 287
- galaxies: active
- galaxies: jets
- radiation mechanisms: non-thermal
- gamma-rays: galaxies