Abstract
In this paper, we present multi-band photometric observations and analysis of the host galaxies for a sample of five interesting gamma-ray bursts (GRBs) observed using the 3.6m Devasthal optical telescope (DOT) and the back-end instruments. The host galaxy observations of GRBs provide unique opportunities to estimate the stellar mass, ages, star-formation rates and other vital properties of the burst environments and hence, progenitors. We performed a detailed spectral energy distribution (SED) modeling of the five host galaxies using an advanced tool called Prospector, a stellar population synthesis model. Furthermore, we compared the results with a larger sample of well-studied host galaxies of GRBs, supernovae and normal star-forming galaxies. Our SED modeling suggests that GRB 130603B, GRB 140102A, GRB 190829A and GRB 200826A have massive host galaxies with high star-formation rates (SFRs). On the other hand, a supernovae-connected GRB 030329 has a rare low-mass galaxy with a low star-formation rate. We also find that GRB 190829A has the highest (in our sample) amount of visual dust extinction and gas in its local environment of the host, suggesting that the observed very high-energy emission from this burst might have a unique local environment. Broadly, the five GRBs in our sample satisfy the typical correlations between host galaxies parameters and these physical parameters are more common to normal star-forming galaxies at the high-redshift Universe. Our results also demonstrate the capabilities of 3.6m DOT and the back-end instruments for the deeper photometric studies of the host galaxies of energetic transients, such as GRBs, supernovae and other transients in the long run.
This is a preview of subscription content, access via your institution.







Notes
Introduced as the Swift gamma-ray burst host galaxy legacy survey.
This catalog comprises the properties of \(\sim \)700,000 galaxies with measured redshifts values <0.3 using SDSS.
References
Abazajian K., Adelman-McCarthy J. K., Agüeros M. A., et al. 2005, AJ, 129, 1755. https://doi.org/10.1086/427544
Abdalla H., Adam R., Aharonian F., et al. 2019, Nature, 575, 464. https://doi.org/10.1038/s41586-019-1743-9
Ahumada T., Singer L. P., Anand S., et al. 2021, Nature Astronomy. https://doi.org/10.1038/s41550-021-01428-7
Antonelli L. A., D’Avanzo P., Perna R., et al. 2009, Astronomy and Astrophysics, 507, L45. https://doi.org/10.1051/0004-6361/200913062
Barthelmy S. D., Baumgartner W. H., Cummings J. R., et al. 2013, GCN, 14741, 1
Basa S., Cuby J. G., Savaglio S., et al. 2012, Astronomy and Astrophysics, 542, A103. https://doi.org/10.1051/0004-6361/201218882
Berger E. 2009, ApJ, 690, 231. https://doi.org/10.1088/0004-637X/690/1/231
Berger E., Soderberg A. M., Frail D. A. 2003, GCN, 2014, 1
Cano Z., Wang S.-Q., Dai Z.-G., et al. 2017, Advances in Astronomy, 2017, 8929054. https://doi.org/10.1155/2017/8929054
Cardelli J. A., Clayton G. C., Mathis J. S. 1989, ApJ, 345, 245. https://doi.org/10.1086/167900
Castro Cerón J. M., Michałowski M. J., Hjorth J., et al. 2006, ApJL, 653, L85. https://doi.org/10.1086/510618
Castro Cerón J. M., Michałowski M. J., Hjorth J., et al. 2010, ApJ, 721, 1919. https://doi.org/10.1088/0004-637X/721/2/1919
Chabrier G. 2003, Publications of the Astronomical Society of the Pacific, 115, 763. https://doi.org/10.1086/376392
Chand V., Banerjee A., Gupta R., et al. 2020, ApJ, 898, 42. https://doi.org/10.3847/1538-4357/ab9606
Conroy C., Gunn J. E., White M. 2009, ApJ, 699, 486. https://doi.org/10.1088/0004-637X/699/1/486
Daddi E., Dickinson M., Morrison G., et al. 2007, ApJ, 670, 156. https://doi.org/10.1086/521818
Della Valle M., Chincarini G., Panagia N., et al. 2006, Nature, 444, 1050. https://doi.org/10.1038/nature05374
de Naurois M. 2019, The Astronomer’s Telegram, 1 3052
de Ugarte Postigo A., Thöne C. C., Rowlinson A., et al. 2014, Astronomy and Astrophysics, 563, A62. https://doi.org/10.1051/0004-6361/201322985
de Ugarte Postigo A., Thöne C. C., Martín S., et al. 2020, Astronomy and Astrophysics, 633, A68. https://doi.org/10.1051/0004-6361/201936668
Dimple D., Panchal A., Gangopadhyay A., et al. 2020, GCN, 29148, 1
Finlator K., Oppenheimer B. D., Davé R. 2011, MNRAS, 410, 1703. https://doi.org/10.1111/j.1365-2966.2010.17554.x
Fong W., Berger E. 2013, ApJ, 776, 18. https://doi.org/10.1088/0004-637X/776/1/18
Gorosabel J., Pérez-Ramírez D., Sollerman J., et al. 2005, Astronomy and Astrophysics, 444, 711. https://doi.org/10.1051/0004-6361:20052768
Greiner J., Peimbert M., Esteban C., et al. 2003, GCN, 2020, 1
Greiner J., Krühler T., Klose S., et al. 2011, Astronomy and Astrophysics, 526, A30. https://doi.org/10.1051/0004-6361/201015458
Gupta R., Oates S. R., Pandey S. B., et al. 2021a, MNRAS, 505, 4086. https://doi.org/10.1093/mnras/stab1573
Gupta R., Pandey S. B., Castro-Tirado A. J., et al. 2021b, Revista Mexicana de Astronomia y Astrofisica Conference Series, 53, 113. https://doi.org/10.22201/ia.14052059p.2021.53.23
Gupta R., Kumar A., Bhushan Pandey S., et al. 2021c, arXiv:2111.11795
Gupta R., Pandey S. B., Kumar A., et al. 2021d, GCN, 29490, 1
Gupta R., Pandey S. B., Ror A., et al. 2021e, GCN, 31299, 1
Gupta R., Gupta S., Chattopadhyay T., et al. 2022, MNRAS, 511, 1694. https://doi.org/10.1093/mnras/stac015
Hashimoto T., Hatsukade B., Goto T., et al. 2019, MNRAS, 488, 5029. https://doi.org/10.1093/mnras/stz2034
Hjorth J., Sollerman J., Møller P., et al. 2003, Nature, 423, 847. https://doi.org/10.1038/nature01750
Hu Y.-D., Castro-Tirado A. J., Kumar A., et al. 2021, Astronomy and Astrophysics, 646, A50. https://doi.org/10.1051/0004-6361/202039349
Jakobsson P., Hjorth J., Fynbo J. P. U., et al. 2004, ApJL, 617, L21. https://doi.org/10.1086/427089
Japelj J., Vergani S. D., Salvaterra R., et al. 2018, Astronomy and Astrophysics, 617, A105. https://doi.org/10.1051/0004-6361/201833209
Johnson B. D., Leja J., Conroy C., et al. 2021, ApJS, 254, 22. https://doi.org/10.3847/1538-4365/abef67
Kann D. A., Klose S., Zeh A. 2006, ApJ, 641, 993. https://doi.org/10.1086/500652
Kann D. A., Klose S., Zhang B., et al. 2010, ApJ, 720, 1513. https://doi.org/10.1088/0004-637X/720/2/1513
Krühler T., Greiner J., Schady P., et al. 2011, Astronomy and Astrophysics, 534, A108. https://doi.org/10.1051/0004-6361/201117428
Kumar P., Zhang B. 2015, Physics Reports, 561, 1. https://doi.org/10.1016/j.physrep.2014.09.008
Kumar A., Pandey S. B., Gupta R., et al. 2021a, in Revista Mexicana de Astronomia y Astrofisica Conference Series, Vol. 53, 127. https://doi.org/10.22201/ia.14052059p.2021.53.25
Kumar A., Pandey S. B., Singh A., et al. 2021b, arXiv:2111.13018
Kumar H., Gupta R., Saraogi D., et al. 2022, MNRAS. https://doi.org/10.1093/mnras/stac1061
Lehnert M. D., van Driel W., Le Tiran L., et al. 2015, Astronomy and Astrophysics, 577, A112. https://doi.org/10.1051/0004-6361/201322630
Leja J., Johnson B. D., Conroy C., et al. 2017, ApJ, 837, 170. https://doi.org/10.3847/1538-4357/aa5ffe
MAGIC Collaboration, Acciari V. A., Ansoldi S., et al. 2019, Nature, 575, 455. https://doi.org/10.1038/s41586-019-1750-x
Mannucci F., Salvaterra R., Campisi M. A. 2011, MNRAS, 414, 1263. https://doi.org/10.1111/j.1365-2966.2011.18459.x
Mangan J., Dunwoody R., Meegan C., et al. 2020, GCN, 28287, 1
Marshall F., Swank J. H. 2003, GCN, 1996, 1
Noeske K. G., Weiner B. J., Faber S. M., et al. 2007, ApJL, 660, L43. https://doi.org/10.1086/517926
Nugent A. E., Fong W., Dong Y., et al. 2020, ApJ, 904, 52. https://doi.org/10.3847/1538-4357/abc24a
Ojha D., Ghosh S. K., Sharma S., et al. 2018, Bulletin de la Societe Royale des Sciences de Liege, 87, 58
Östlin G., Zackrisson E., Sollerman J., et al. 2008, MNRAS, 387, 1227. https://doi.org/10.1111/j.1365-2966.2008.13319.x
Pandey S. B., Yadav R. K. S., Nanjappa N., et al. 2018, Bulletin de la Societe Royale des Sciences de Liege, 87, 42
Pandey S. B., Hu Y., Castro-Tirado A. J., et al. 2019, MNRAS, 485, 5294. https://doi.org/10.1093/mnras/stz530
Panwar N., Kumar A., Pandey S. B. 2021, 2111.11796
Perley D. A., Cenko S. B., Bloom J. S., et al. 2009, AJ, 138, 1690. https://doi.org/10.1088/0004-6256/138/6/1690
Perley D. A., Levan A. J., Tanvir N. R., et al. 2013, ApJ, 778, 128. https://doi.org/10.1088/0004-637X/778/2/128
Perley D. A., Krühler T., Schulze S., et al. 2016a, ApJ, 817, 7. https://doi.org/10.3847/0004-637X/817/1/7
Perley D. A., Tanvir N. R., Hjorth J., et al. 2016b, ApJ, 817, 8. https://doi.org/10.3847/0004-637X/817/1/8
Peterson B. A., Price P. A. 2003, GCN, 1985, 1
Piran T. 2004, Reviews of Modern Physics, 76, 1143. https://doi.org/10.1103/RevModPhys.76.1143
Rastinejad J. C., Gompertz B. P., Levan A. J., et al. 2022, arXiv:2204.10864
Rhodes L., van der Horst A. J., Fender R., et al. 2022, MNRAS. https://doi.org/10.1093/mnras/stac1057
Rossi A., Rothberg B., Palazzi E., et al. 2022, ApJ, 932, 1. https://doi.org/10.3847/1538-4357/ac60a2
Salim S., Lee J. C., Janowiecki S., et al. 2016, ApJS, 227, 2. https://doi.org/10.3847/0067-0049/227/1/2
Salim S., Boquien M., Lee J. C. 2018, ApJ, 859, 11. https://doi.org/10.3847/1538-4357/aabf3c
Savaglio S., Glazebrook K., Le Borgne D. 2006, Gamma-Ray Bursts in the Swift Era, 836, 540. https://doi.org/10.1063/1.2207951
Savaglio S., Glazebrook K., Le Borgne D. 2009, ApJ, 691, 182. https://doi.org/10.1088/0004-637X/691/1/182
Schady P., Dwelly T., Page M. J., et al. 2012, Astronomy and Astrophysics, 537, A15. https://doi.org/10.1051/0004-6361/201117414
Schlafly E. F., Finkbeiner D. P. 2011, ApJ, 737, 103. https://doi.org/10.1088/0004-637X/737/2/103
Sharma S., Ghosh A., Ojha D. K., et al. 2020, MNRAS, 498, 2309. https://doi.org/10.1093/mnras/staa2412
Skrutskie M. F., Cutri R. M., Stiening R., et al. 2006, AJ, 131, 1163. https://doi.org/10.1086/498708
Svensson K. M., Levan A. J., Tanvir N. R., et al. 2010, MNRAS, 405, 57. https://doi.org/10.1111/j.1365-2966.2010.16442.x
Tanvir N. R., Levan A. J., Fruchter A. S., et al. 2013, Nature, 500, 547. https://doi.org/10.1038/nature12505
Taggart K., Perley D. A. 2021, MNRAS, 503, 3931. https://doi.org/10.1093/mnras/stab174
Thone C. C., de Ugarte Postigo A., Gorosabel J., et al. 2013, GCN, 14744, 1
Tiengo A., Mereghetti S., Ghisellini G., et al. 2004, Astronomy and Astrophysics, 423, 861. https://doi.org/10.1051/0004-6361:20041027
Troja E., Fryer C. L., O’Connor B., et al. 2022, Nature, 2209.03363
Whitaker K. E., van Dokkum P. G., Brammer G., et al. 2012, ApJL, 754, L29. https://doi.org/10.1088/2041-8205/754/2/L29
Yang B., Jin Z.-P., Li X., et al. 2015, Nature Communications, 6, 7323. https://doi.org/10.1038/ncomms8323
Zhang B.-B., Liu Z.-K., Peng Z.-K., et al. 2021, Nature Astronomy, 5, 911. https://doi.org/10.1038/s41550-021-01395-z
Acknowledgements
We thank the anonymous referee for providing positive and constructive comments to improve the manuscript. RG, and SBP acknowledge BRICS grant DST/IMRCD/BRICS/PilotCall1/ProFCheap/2017(G) for the financial support. RG and SBP acknowledge the financial support of ISRO under AstroSat archival Data utilization program (DS_2B-13013(2)/1/2021-Sec.2). AA acknowledges funds and assistance provided by the Council of Scientific & Industrial Research (CSIR), India, with file no. 09/948(0003)/2020-EMR-I. AJCT and SBP acknowledge support from the Spanish ministry project PID2020-118491GB-I00. AJCT also acknowledges Junta de Andalucía project P20_01068 and the ‘Center of Excellence Severo Ochoa’ award for the Instituto de Astrofísica de Andalucía (SEV-2017-0709). This research is based on the observations obtained at the 3.6m Devasthal optical telescope (DOT), which is a national facility run and managed by Aryabhatta Research Institute of Observational Sciences (ARIES), an autonomous Institute under Department of Science and Technology, Government of India. RG and SBP thank Dr. Youdong Hu for sharing the data files used to show Figure 5 in this paper. RG also thanks Ms. Dimple for helping with Prospector.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is part of the Special Issue on “Astrophysical Jets and Observational Facilities: A National Perspective”.
Appendix
Appendix
Rights and permissions
About this article
Cite this article
Gupta, R., Pandey, S.B., Kumar, A. et al. Photometric studies on the host galaxies of gamma-ray bursts using 3.6m Devasthal optical telescope. J Astrophys Astron 43, 82 (2022). https://doi.org/10.1007/s12036-022-09865-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12036-022-09865-0
Keyword
- Gamma-ray burst: general—galaxies: dwarf—methods: data analysis—techniques: photometric