Abstract
The short gamma ray bursts (GRBs) are the aftermath of the merger of binary compact objects (neutron star–neutron star or neutron star–black hole systems). With the simultaneous detection of gravitational wave (GW) signal from GW 170817 and GRB 170817A, the much-hypothesized connection between GWs and short GRBs has been proved beyond doubt. The resultant product of the merger could be a millisecond magnetar or a black hole depending on the binary masses and their equation of state. In the case of a magnetar central engine, fraction of the rotational energy deposited to the emerging ejecta produces late-time synchrotron radio emission from the interaction with the ambient medium. In this paper, we present an analysis of a sample of short GRBs located at a redshift of \(z \le 0.16\), which were observed at the late-time to search for the emission from merger ejecta. Our sample consists of seven short GRBs, which have radio upper limits available from very large array and Australian telescope compact array observations. We generate the model light curves using the standard magnetar model incorporating the relativistic correction. Using the model light curves and upper limits we constrain the number density of the ambient medium to be \(10^{-5}\)–\(10^{-3}\) cm\(^{-3}\) for rotational energy of the magnetar \(E_\mathrm{rot} \sim 5\times 10^{51}\) erg. Variation in ejecta mass does not play a significant role in constraining the number density.
This is a preview of subscription content, access via your institution.





References
Abbott B. P., Abbott R., Abbott T. D., et al. 2017, The Astrophysical Journal Letters, 848, L13
Andreoni I., Ackley K., Cooke J., et al. 2017, Publications of the Astronomical Society of Australia, 34, e069
Drout M. R., Piro A. L., Shappee B. J., et al. 2017, Science, 358, 1570
Fong W., Metzger B. D., Berger E., Özel F. 2016, The Astrophysical Journal, 831, 141
Gehrels N., Chincarini G., Giommi P., et al. 2004, The Astrophysical Journal, 611, 1005
Hajela A., Margutti R., Alexander K. B., et al. 2016, The Astrophysical Journal Letters, 831, 141
Horesh A., Hotokezaka K., Piran T., Nakar E., Hancock P. 2016, The Astrophysical Journal Letters, 819, L22
Komatsu E., Smith K. M., Dunkley J., et al. 2011, The Astrophysical Journal Supplement Series, 192, 18
Liu L.-D., Gao H., Zhang B. 2020, The Astrophysical Journal, 890, 102
Metzger B. D. 2017, Living Reviews in Relativity, 20, 3
Metzger B. D., Bower G. C. 2014, Monthly Notices of the Royal Astronomical Society, 437, 1821
Metzger B. D., Fernández R. 2014, Monthly Notices of the Royal Astronomical Society, 441, 3444
Metzger B. D., Margalit B., Kasen D., Quataert, E. 2015, Monthly Notices of the Royal Astronomical Society, 454, 3311
Metzger B. D., Quataert E., Thompson T. A. 2008, Monthly Notices of the Royal Astronomical Society, 385, 1455
Nakar E. 2007, Physics Reports, 442, 166
Nakar E., Piran T. 2011, Nature, 478, 82
Pe’er A. 2012, The Astrophysical Journal Letters, 752, L8
Ricci R., Troja E., Bruni G., et al. 2021, Monthly Notices of the Royal Astronomical Society, 500, 1708
Rowlinson A., O’Brien P. T., Metzger B. D., Tanvir N. R., Levan A. J. 2013, Monthly Notices of the Royal Astronomical Society, 430, 1061
Rowlinson A., Wiersema K., Levan A. J., et al. 2010, Monthly Notices of the Royal Astronomical Society, 408, 383
Savchenko V., Ferrigno C., Kuulkers E., et al. 2017, The Astrophysical Journal Letters, 848, L15
Schroeder G., Margalit B., Fong W.-F., et al. 2020, The Astrophysical Journal, 902, 82
Stratta G., D’Avanzo P., Piranomonte S., et al. 2007, Astronomy and Astrophysics, 474, 827
Tanvir N. R., Levan A. J., González-Fernández C., et al. 2017, The Astrophysical Journal Letters, 848, L27
Troja E., Ryan G., Piro L., et al. 2018, Nature Communications, 9, 4089
Troja E., Castro-Tirado A. J., Becerra González J., et al. 2019, Monthly Notices of the Royal Astronomical Society, 489, 2104
Valenti S., Sand D. J., Yang S., et al. 2017, The Astrophysical Journal Letters, 848, L24
Wijers R. A. M. J., Galama T. J. 1999, The Astrophysical Journal, 523, 177
Yang B., Jin Z.-P., Li X., et al. 2015, Nature Communications, 6, 7323
Yu Y.-W., Zhang B., Gao H. 2013, The Astrophysical Journal Letters, 776, L40
Zhang B., Mészáros P. 2001, The Astrophysical Journal Letters, 552, L35
Acknowledgements
KM acknowledges BRICS grant DST/IMRCD/BRICS/PilotCall1/ProFCheap/2017(G) for the financial support. KGA is partially supported by the Swarnajayanti Fellowship Grant No. DST/SJF/PSA-01/2017-18, MATRICS Grant MTR/2020/000177 of SERB and a grant from the Infosys Foundation.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is part of the Special Issue on “Astrophysical Jets and Observational Facilities: A National Perspective”.
Rights and permissions
About this article
Cite this article
Ghosh, A., Misra, K., Cherukuri, S.V. et al. Modeling the late-time merger ejecta emission in short gamma ray bursts. J Astrophys Astron 43, 66 (2022). https://doi.org/10.1007/s12036-022-09860-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12036-022-09860-5
Keywords
- Gravitational waves
- surveys
- gamma-ray burst: general
- stars: magnetars
- stars: neutron