Abstract
General relativistic, advective, viscous, two-temperature accretion disc solutions are studied around a Schwarzschild black hole. The thermodynamics of the flow is described by the relativistic equation of state or Chattopadhyay and Ryu equation of state modified for a two-temperature regime. The cooling processes considered are bremsstrahlung, synchrotron and the Comptonization of these photons. The degeneracy of accretion solutions in the two-temperature regime is resolved using the so called ‘maximum entropy’ methodology. Utilizing this method, we analyzed the unique solutions and the corresponding spectra for a broad range of parameter space. Interplay between heating due to viscous dissipation and cooling due to different radiation mechanisms plays a significant role in determining the solution and spectrum obtained. In the end, we analyze the observation of a low luminosity AGN, NGC 3998, fitted using our model.
This is a preview of subscription content, access via your institution.






References
Abramowicz M. A., Czerny B., Lasota J. P., Szuszkiewicz E., 1988, ApJ, 332, 646. https://doi.org/10.1086/166683
Aktar R., Das S., Nandi A., Sreehari H., 2017, MNRAS, 471, 4806. https://doi.org/10.1093/mnras/stx1893
Blaes O., 2014, SSRv, 183, 21. https://doi.org/10.1007/s11214-013-9985-6
Bondi H., 1952, MNRAS, 112, 195. https://doi.org/10.1093/mnras/112.2.195
Bandyopadhyay B., Xie F.-G., Nagar N. M., et al., 2019, MNRAS, 490, 4606. https://doi.org/10.1093/mnras/stz2874
Chael A., Narayan R., Johnson M. D., 2019, MNRAS, 486, 2873. https://doi.org/10.1093/mnras/stz988
Chakrabarti S. K., 1989, ApJ, 347, 365. https://doi.org/10.1086/168125
Chakrabarti S., Titarchuk L. G., 1995, ApJ, 455, 623. https://doi.org/10.1086/176610
Chakrabarti S. K., Mondal S., Debnath D., 2015, MNRAS, 452, 3451. https://doi.org/10.1093/mnras/stv1566
Chattopadhyay I., 2008, AIPC, 1053, 353. https://doi.org/10.1063/1.3009507
Chattopadhyay I., Ryu D., 2009, ApJ, 694, 492. https://doi.org/10.1088/0004-637X/694/1/492
Chattopadhyay I., Chakrabarti S. K., 2011, IJMPD, 20, 1597. https://doi.org/10.1142/S0218271811019487
Chattopadhyay I., Kumar R., 2016, MNRAS, 459, 3792. https://doi.org/10.1093/mnras/stw876
Colpi M., Maraschi L., Treves A., 1984, ApJ, 280, 319. https://doi.org/10.1086/161998
Das S., Chattopadhyay I., Nandi A., Molteni D., 2014, MNRAS, 442, 251. https://doi.org/10.1093/mnras/stu864
Di Matteo T., Quataert E., Allen S. W., Narayan R., Fabian A. C., 2000, MNRAS, 311, 507. https://doi.org/10.1046/j.1365-8711.2000.03134.x
Dihingia I. K., Das S., Mandal S., 2018, MNRAS, 475, 2164. https://doi.org/10.1093/mnras/stx3269
Fukue J., 1987, PASJ, 39, 309
Ichimaru S., 1977, ApJ, 214, 840. https://doi.org/10.1086/155314
Ipser J. R., Price R. H., 1982, ApJ, 255, 654. https://doi.org/10.1086/159866
Joshi R. K., Chattopadhyay I., Yadav L., 2021, MNRAS. https://doi.org/10.1093/mnras/stab2841
Kim J., Garain S. K., Chakrabarti S. K., Balsara D. S., 2019, MNRAS, 482, 3636. https://doi.org/10.1093/mnras/sty2953
Kumar R., Singh C. B., Chattopadhyay I., Chakrabarti S. K., 2013, MNRAS, 436, 2864. https://doi.org/10.1093/mnras/stt1781
Lasota J. P., 1994, ASIC, 417, 341
Lee S.-J., Ryu D., Chattopadhyay I., 2011, ApJ, 728, 142. https://doi.org/10.1088/0004-637X/728/2/142
Liang E. P. T., Thompson K. A., 1980, ApJ, 240, 271. https://doi.org/10.1086/158231
Lightman A. P., Press W. H., Price R. H., Teukolsky S. A., 1975, pbrg.book
Mandal S., Chakrabarti S. K., 2008, ApJL, 689, L17. https://doi.org/10.1086/595782
Manmoto T., Mineshige S., Kusunose M., 1997, ApJ, 489, 791. https://doi.org/10.1086/304817
Maoz D., 2007, MNRAS, 377, 1696. https://doi.org/10.1111/j.1365-2966.2007.11735.x
Molteni D., Sponholz H., Chakrabarti S. K., 1996, ApJ, 457, 805. https://doi.org/10.1086/176775
Mościbrodzka M., Falcke H., Noble S., 2016, A&A, 596, A13. https://doi.org/10.1051/0004-6361/201629157
Nakamura K. E., Matsumoto R., Kusunose M., Kato S., 1996, PASJ, 48, 761. https://doi.org/10.1093/pasj/48.5.761
Narayan R., Yi I., 1994, ApJL, 428, L13. https://doi.org/10.1086/187381
Narayan R., Yi I., 1995, ApJ, 452, 710. https://doi.org/10.1086/176343
Nemmen R., Storchi-Bergmann T., Eracleous M., Yuan F., 2010, IAUS, 267, 313. https://doi.org/10.1017/S1743921310006538
Ptak A., Terashima Y., Ho L. C., Quataert E., 2004, ApJ, 606, 173. https://doi.org/10.1086/382940
Rajesh S. R., Mukhopadhyay B., 2010, MNRAS, 402, 961. https://doi.org/10.1111/j.1365-2966.2009.15925.x
Sadowski A., 2009, ApJS, 183, 171. https://doi.org/10.1088/0067-0049/183/2/171
Sadowski A., Gaspari M., 2017, MNRAS, 468, 1398. https://doi.org/10.1093/mnras/stx543
Sadowski A., Wielgus M., Narayan R., et al. 2017, MNRAS, 466, 705. https://doi.org/10.1093/mnras/stw3116
Sarkar S., Chattopadhyay I., 2019a, IJMPD, 28, 1950037. https://doi.org/10.1142/S0218271819500378
Sarkar S., Chattopadhyay I., 2019b, JPhCS, 1336, 012019. https://doi.org/10.1088/1742-6596/1336/1/012019
Sarkar S., Chattopadhyay I., 2020, JPhCS, 1640, 012022. https://doi.org/10.1088/1742-6596/1640/1/012022
Sarkar S., Chattopadhyay I., Laurent P., 2020, A&A, 642, A209. https://doi.org/10.1051/0004-6361/202037520
Shakura N. I., Sunyaev R. A., 1973, A&A, 500, 33
Shapiro S. L., Lightman A. P., Eardley D. M., 1976, ApJ, 204, 187. https://doi.org/10.1086/154162
Shapiro S. L., 1973, ApJ, 180, 531. https://doi.org/10.1086/151982
Shapiro S. L., Salpeter E. E., 1975, ApJ, 198, 671. https://doi.org/10.1086/153645
Suková P., Janiuk A., 2015, MNRAS, 447, 1565. https://doi.org/10.1093/mnras/stu2544
Taub A. H., 1948, PhRv, 74, 328. https://doi.org/10.1103/PhysRev.74.328
West B. F., Wolfram K. D., Becker P. A., 2017, ApJ, 835, 129. https://doi.org/10.3847/1538-4357/835/2/129
Yuan F., Narayan R., 2014, ARA&A, 52, 529. https://doi.org/10.1146/annurev-astro-082812-141003
Zeldovich Y. B., Novikov I. D., 1971, reas.book
Acknowledgement
We thank the anonymous referee for giving suggestions which improved the quality of the paper further.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is part of the Special Issue on “Astrophysical Jets and Observational Facilities: A National Perspective”.
Rights and permissions
About this article
Cite this article
SARKAR, S., CHATTOPADHYAY, I. Viscous dissipative two-temperature accretion flows around black holes. J Astrophys Astron 43, 34 (2022). https://doi.org/10.1007/s12036-022-09820-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12036-022-09820-z
Keyword
- Accretion—two-temperature—black holes—accretion discs—shocks