Abstract
The UBVRI CCD photometric data of open star cluster NGC 1513 are obtained with the 3.6-m Indo-Belgian Devasthal optical telescope (DOT). Analyses of the GAIA EDR3 astrometric data have identified 106 possible cluster members. The mean proper motion of the cluster is estimated as \(\mu _{\alpha }\cos {\delta }=1.29\pm 0.02\) and \(\mu _{\delta }=-3.74\pm 0.02\) mas \({\text {yr}}^{-1}\). Estimated values of reddening \(E(B-V)\) and distance to the NGC 1513 are \(0.65\pm 0.03\) mag and \(1.33\pm 0.1\) kpc, respectively. Age of \(225\pm 25\) Myr is assigned to the cluster by comparing theoretical isochrones with deeply observed cluster sequences. Using observations taken with the 3.6-m DOT, values of distance and age of the galactic globular cluster NGC 4147 are estimated as \(18.2\pm 0.2\) Kpc and \(14\pm 2\) Gyr, respectively. The optical observations of planetary transit around white dwarf WD 1145\(+\)017 and K-band imaging of star-forming region Sharpless Sh 2-61 demonstrate observing capability of 3.6-m DOT. Optical and near-infrared observations of celestial objects and events are being carried out routinely with the 3.6-m DOT. They indicate that the performance of the telescope is at par with those of other similar telescopes located elsewhere in the world. We, therefore, state that this observing facility augurs well for multi-wavelength astronomy including the study of astrophysical jets.
This is a preview of subscription content, access via your institution.

















Notes
IRAF is distributed by the National Optical Astronomical Observatory which is operated by the Association of Universities for Research in Astronomy, under contract with the National Science Foundation.
References
Balaguer-Nunez L., Tian K. P., Zhao J. L. 1998, A&AS, 133, 387
Baumgardt H., Hilket M. 2018, MNRAS, 478, 1520
Barkhatova K. A., Dryakhlushina L. I. 1960, SvA, 4, 313
Baug T., et al. 2018, J. Astron. Instrum., 7, 1850003
Bronnikova N. M. 1958, TrPul, 72, 77
Cantat-Gaudin T., Jordi C., Vallenari A., et al. 2018, A&A, 618, 93
del Rio G., Huestamendia G. 1988, A&AS, 73, 425
Fabricius C., Luri X., Arenou C., et al. 2021, A&A, 649, A5
Frolov V. N., Jilinski E. G., Ananjevskaja J. K., Poljakov E. V., Bronnikova N. M., Gorshanov D. L. I. 2002, A&A, 396, 125
Girad T. M., Grundy W. M., Lopez C. E., van Altena W. F. 1989, AJ, 98, 227
Gaia Collaboration et al. 2018, A&A, 616, A1
Girardi L., Bressan A., Bertelli G., Chiosi C. 2000. A&AS, 141, 371
Gupta R., et al. 2021a, MNRAS, 505, 4086
Gupta R., et al. 2021b, 2022, JApA, 43, (accepted)
Harris W. E. 2010, arXiv:10123224v1 [Astro-ph]
Hidalgo S. L., et al. 2018, ApJ, 856, Art. 125, https://doi.org/10.3847/1538-4357/aab158
Kumar B., et al. 2018, BSRSL, 87, 29
Kumar A., et al. 2021a, MNRAS, 502, 1678
Kumar A., Pandey S. B., Gupta R., et al. 2021b, Revista Mexicana de Astronomia y Astrofisica Conference Series, 53, 127, https://doi.org/10.22201/ia.14052059p.2021.53.25
Kumar A., Pandey S. B., Singh A., et al. 2021c, arXiv:2111.13018
Kumar R., Pradhan A. C., Parthasarthi M., et al. 2021d, JApA, 42, https://doi.org/10.1007/s12036-020-09687-y
Landolt A. U. 1992, AJ, 104, 340
Lata S., et al. 2019, AJ, 158, 158, 51, https://doi.org/10.3847/1538-3881/ab22a6
Ojha D. K., et al. 2018, BSRSL, 87, 58
Omar A., et al. 2017, Curr. Sci., 113, 682, https://doi.org/10.18520/cs/v113/i04/682-685
Omar A., et al. 2019a, Curr. Sci., 116, 1472, https://doi.org/10.18520/cs/v116/i9/1472-1478
Omar A., et al. 2019b, JApA, 40, https://doi.org/10.1007/s12036-019-9583-4
Omar A., et al. 2019c, BSRSL, 88, 31
Maciejewski G., Niedzielski A. 2007, A&A, 467, 1065
Naik M. B. et al. 2012, BASI, 40, 531
Pandey S. B. 2016, Revista Mexicana de Astrono-mia y Astrofisica Conference Series, Vol. 48, RevistaMexicana de Astronomia y Astrofisica Conference Series, p 83
Pandey S. B., et al. 2018, BSRSL, 87, 42
Pandey S. B., et al. 2021, MNRAS, 507, 1229
Panwar N., Kumar A., Pandey S. B. 2022, JoAA, 43, 7, https://doi.org/10.1007/s12036-021-09785-5
Rappaport, et al. 2018, MNRAS, 474, 933
Sagar R. 2018, BSRSL, 87, 391
Sagar R., et al. 2000, A&AS, 144, 349
Sagar R., et al. 2019a, Curr. Sci., 117, 365, https://doi.org/10.18520/cs/v117/i3/365-381
Sagar R., et al. 2019b, BSRSL, 88, 70
Sagar R., Kumar B., Sharma S. 2020, JApA, 42, https://doi.org/10.1007/s12036-020-09652-9
Salpeter E. E. 1955, ApJ, 121, 161
Schmidt-Kaler T. 1982 in Scaitersk, Voigt H. H., eds, Landolt/Bornstein, Numerical Data and Functional Relationship in Science and Technology, New series, Group VI, Vol. 2b, Springer-Verlag, Berlin, p 14
Stalin C. S., et al. 2001, BASI, 29, 39
Stetson P. B. 1987, PASP, 99, 191
Stetson P. B. 1992, in Warral D. M., Biemesderfer C., Barnes J., eds ASP, Conf. Ser. Vol. 25, Astronomical data analysis software and system I. Astron. Soc. Pac., San Francisco, p 297
Trumpler R. J. 1930, Lick Obs. Bull., 14, 154
Vanderburg A., Rappaport S. 2018, Transiting Disintegrating Planetary Debris around WD 1145\(+\)017 (Springer-Verlag: Berlin)
Xu S., et al. 2018, MNRAS, 474, 4795
Yadav R. K. S., Bedin L. R., Piotto G., et al. 2008, A&A, 484, 609
Yadav R. K. S., Sariya D., Sagar R. 2013, MNRAS, 430, 3350
Acknowledgments
This manuscript is based on an invited talk delivered during an international workshop Astrophysical Jets and Observational Facilities: National Perspective held by ARIES from 5–9 April 2021. One of us (Ram Sagar) thanks to the National Academy of Sciences, India (NASI), Prayagraj, for the award of a NASI Honorary Scientist position; the Alexander von Humboldt Foundation, Germany, for the award of Group linkage long-term research program; and the Director, IIA, for hosting and providing infrastructural support during this work. SBP acknowledges financial support received from the BRICS grant DST/IMRCD/BRICS/PilotCall1/ProFCheap/2017(G). SJ thanks Nand Kumar and Amit Kumar for their help in data analysis and preparing the figures. The 3.6-m Devasthal Optical Telescope (DOT) is a National Facility run and managed by Aryabhatta Research Institute of Observational Sciences (ARIES), an autonomous Institute under the Department of Science and Technology, Government of India. This research has made use of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC) and the Leicester Database and Archive Service (LEDAS), provided by NASA’s Goddard Space Flight Center and the Department of Physics and Astronomy, Leicester University, UK, respectively. This work has made use of data from the European Space Agency (ESA) mission GAIA processed by Gaia Data processing and Analysis Consortium (DPAC), (https://www.cosmos.esa.int/web/gaia/dpac/consortium). It is worthy to mention that, this work has also used WEBDA.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is part of the Special Issue on “Astrophysical Jets and Observational Facilities: A National Perspective”.
Rights and permissions
About this article
Cite this article
SAGAR, R., YADAV, R.K.S., PANDEY, S.B. et al. Optical observations of star clusters NGC 1513 and NGC 4147; white dwarf WD 1145\(+\)017 and K band imaging of star-forming region Sh 2-61 with the 3.6-m Devasthal optical telescope. J Astrophys Astron 43, 31 (2022). https://doi.org/10.1007/s12036-022-09815-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12036-022-09815-w
Keywords
- Star clusters
- NGC 1513
- NGC 4147
- WD 1145\(+\)017
- Sh 2-61
- CCD imager