Skip to main content

Pre-flight evaluation of the soft X-ray telescope optics aboard AstroSat

Abstract

Soft X-ray telescope (SXT) built on the principle of grazing incidence optics was launched on-board AstroSat on September 28, 2015, and made operational on October 26, 2015. The telescope optics consists of two conical sections of approximate paraboloid and hyperboloid mirror segments arranged in Wolter type-I design. It comprises a total of 320 mirror segments made from aluminum foil of 0.2 mm thickness coated with gold on the front (reflective) side by the replication process that was first used in the Suzaku Observatory. The mirrors focus X-rays in the energy range of 0.3–8.0 keV on to a charged coupled device-based focal plane camera assembly at a distance of 2 m. We present here the pre-launch, ground-based calibration, and evaluation of SXT optics carried out at the X-ray Optics Laboratory at the Tata Institute of Fundamental Research. The SXT optics assembly was calibrated and evaluated experimentally, using scans by a collimated optical beam from a laser source, as well as using a full-aperture optical beam from an inverse telescope. A collimated beam of a red laser source was used to ensure the accuracy of mounting of individual mirror segments and the full aperture beam white light-emitting diode (LED) source was used to estimate the point spread function (PSF) of all 320 mirrors together. The approximate PSF obtained during the ground calibration was around 136.6 arcsec. These results were in accordance with the results obtained during the in-orbit calibration post launch.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26

References

  1. Agrawal P. C. 2006, Adv. Space Res., 38, 2989

    ADS  Article  Google Scholar 

  2. Aschenbach B. 1985, Rep. Prog. Phys. 48, 579 https://doi.org/10.1088/0034-4885/48/5/001

  3. Aschenbach B. 2009, Exp. Astron. 26, 95 https://doi.org/10.1007/s10686-009-9163-8

    ADS  Article  Google Scholar 

  4. Burrows D. N., Hill J. E., Nousek J. A. et al. 2005, Space Sci. Rev. 120, 165 https://doi.org/10.1007/s11214-005-5097-2

    ADS  Article  Google Scholar 

  5. Jansen F., Lumb D., Altieri B. et al. 2001, Astron. Astrophys. 10, 61 https://doi.org/10.1051/0004-6361

    Article  Google Scholar 

  6. Koglin J., An H., Blaedel K. L. et al. 2009, Proc. SPIE - Int. Soc. Opt. Eng. 7437

  7. Kothare A., Mirza I., Singh K. P., Abbey A. F. 2009, Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip. 604, 747 https://doi.org/10.1016/j.nima.2009.01.103

  8. Kunieda H., Serlemitsos P. J. 1988, Appl. Opt. 27, 1544 https://doi.org/10.1364/ao.27.001544

    ADS  Article  Google Scholar 

  9. Kunieda H., Ishida M., Endo T. et al. 2001, Appl. Opt. 40, 553 https://doi.org/10.1364/AO.40.000553

    ADS  Article  Google Scholar 

  10. Mao P. H., Harrison F. A., Windt D. L., Christensen F. E. 1999, Appl. Opt. 38, 4766 https://doi.org/10.1364/AO.38.004766

    ADS  Article  Google Scholar 

  11. Sagdeo A., Rai S. K., Lodha G. S. et al. 2010, Exp. Astron. 28, 11 https://doi.org/10.1007/s10686-010-9183-4

    ADS  Article  Google Scholar 

  12. Serlemitsos P. J., Soong Y. 1996, Astrophys. Space Sci. 239, 177 https://doi.org/10.1007/BF00645773

    ADS  Article  Google Scholar 

  13. Serlemitsos P. J., Peter J., Soong Y. et al. 2007, Publ. Astronom. Soc. Jpn. 59, S9 https://doi.org/10.1093/pasj/59.sp1.S9

    Article  Google Scholar 

  14. Singh K. P. 2005, Resonance 10, 15

    Article  Google Scholar 

  15. Singh K. P. 2011, J. Opt. 40, 88 https://doi.org/10.1007/s12596-011-0040-2

    Article  Google Scholar 

  16. Singh K. P., Tandon S. N., Agrawal P. C. et al. 2014, ASTROSAT Mission. Proc. SPIE – Int. Soc. Opt. Eng. 9144, 91441S. Space Telescopes and Instrumentation: Ultraviolet to Gamma Rays https://doi.org/10.1117/12.2062667

  17. Singh K. P. 2015, AstroSat: India’s first multi-wavelength astronomy satellite. In National Conference on CICAHEP, Dibrugarh, 1

    ADS  Google Scholar 

  18. Singh, K. P., Stewart G. C., Chandra S. et al. 2016, In-orbit performance of SXT aboard AstroSat. Proc. SPIE – Int. Soc. Opt. Eng. 9905 https://doi.org/10.1117/12.2235309

  19. Singh K. P. Stewart G., Westergaard N. et al. 2017a, J. Astrophys. Astron. https://doi.org/10.1007/s12036-017-9448-7

    Article  Google Scholar 

  20. Singh K. P., Dewangan G. C., Chandra S. et al. 2017b, Curr. Sci., 113, 587 https://doi.org/10.18520/cs/v113/i04/587-590

    ADS  Article  Google Scholar 

  21. Tanaka Y., Inoue H., Holt S. S. 1994, Publ. Astron. Soc. Jpn. 46, L37

    ADS  Google Scholar 

  22. Weisskopf M. C., Tananbaum H. D., Van Speybroeck L. P., O’Dell S. L. 2000, Chandra X-Ray Observatory (CXO), overview. In SPIE 4012, X-Ray Optics, Instruments, and Missions III, 2 https://doi.org/10.1117/12.391545

  23. Westergaard N. J., Byrnak B. P., Christensen F. E. et al. 1989, Status of the development of a thin foil high throughput X-ray telescope for the Soviet spectrum X-gamma mission, Proc. SPIE – Int. Soc. Opt. Eng. 1160, X-Ray/EUV Optics for Astronomy and Microscopy https://doi.org/10.1117/12.962673

  24. Windt D. L., Waskiewicz W. K., Griffith J. E. 2009, Appl. Opt. 33, 2025 https://doi.org/10.1364/ao.33.002025

    ADS  Article  Google Scholar 

  25. Wolter H. 1952a, Ann. Phys. 10, 94

    Article  Google Scholar 

  26. Wolter H. 1952b, Ann. Phys. 10, 286

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Irfan Mirza, Mr. Devendra Pathare, Mr. Sandeep Vishvakarma, Mrs Nilima Kamble, Mr. Jayprakash Koyande, Mr. Balu Bagade, Dr Nisha Yadav, Dr K Mukerjee, the staff members of DAA, TIFR, for their contribution to the experimental work carried out in the Soft X-ray Laboratory, TIFR. We specially acknowledge the efforts of former staff members of DAA, TIFR, Mr. Umesh Tonpe and Mr. Ganesh Gawde for their valuable contribution in the initial experiments of calibration of stand-alone optics. We thank Prof. G S Lodha and Dr Sanjay Rai from Raja Ramanna Centre for Advanced Technology, Indore, for their support in the X-ray characterization of individual mirror segments. We thank Dr N J Westergaard of Danish Technical University, Denmark and Dr H Kunieda, Dr Y Tawara and Dr Y Ogasaka of the Nagoya University, Japan for guidance in the design of the mirror assembly and fabrication of mirror segments. We also thank Mr. Koteshwar Rao and his team from the Indian Space Research Organisation, for their valuable guidance in setting up the apparatus for full beam aperture scans.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vinita Navalkar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Navalkar, V., Singh, K.P., Shah, H. et al. Pre-flight evaluation of the soft X-ray telescope optics aboard AstroSat. J Astrophys Astron 42, 103 (2021). https://doi.org/10.1007/s12036-021-09754-y

Download citation

Keywords

  • X-ray optics
  • soft X-ray telescope
  • Wolter type-I optics
  • AstroSat
  • X-ray astronomy