Skip to main content

A large-scale heuristic modification of Newtonian gravity as an alternative approach to dark energy and dark matter

Abstract

The peculiarities of the inverse square law of Newtonian gravity in standard big bang cosmology are discussed. It is shown that the incorporation of an additive term to Newtonian gravitation, as the inverse Yukawa-like field, allows removing the incompatibility between the flatness of the Universe and the density of matter in the Friedmann equation, provides a new approach for dark energy, and enables theoretical deduction of the Hubble–Lemaïtre law. The source of this inverse Yukawa-like field is the ordinary baryonic matter and represents the large-scale contribution of gravity in accordance with the Mach principle. It is heuristically built from a specular reflection of the Yukawa potential, in agreement with astronomical and laboratory observables, resulting null in the inner solar system, weakly attractive in ranges of interstellar distances, very attractive in distance ranges comparable to the clusters of galaxies, and repulsive in cosmic scales. Its implications in the missing mass of Zwicky, virial theorem, Kepler’s third law in globular clusters, rotation curves of galaxies, gravitational redshift, and Jean’s mass are discussed. The inclusion of the inverse Yukawa-like field in Newtonian gravitation predicts a graviton mass of at least 10−64 kg and could be an alternative to the paradigm of non-baryonic dark matter concomitant with the observables of the big bang.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Adelberger E. G. et al. 2003, Ann. Rev. Nucl. Part. Sci. 53, 77

    ADS  Article  Google Scholar 

  2. Arp H. 2003, Catalogue of Discordant Redshift Associations, Aperion: Montreal, Quebec, Canada, ISBN 0-9683689-9-9. https://ui.adsabs.harvard.edu/abs/2003cdra.book.....A/abstract

  3. Bergshoeff E. et al. 2009, Phys. Rev. Lett. 102, 201301

    ADS  MathSciNet  Article  Google Scholar 

  4. Bondi H. 1951, Cosmology. Cambridge University Press, London

    MATH  Google Scholar 

  5. Chugreev Yu. V. 2017, Phys. Part. Nucl. Lett. 14, 539

    Article  Google Scholar 

  6. Debono I., Smoot G. F. 2016, Universe 2, 23. https://doi.org/10.3390/universe2040023

    ADS  Article  Google Scholar 

  7. de Jaege T. et al. 2020, A measurement of the Hubble constant from Type II supernovae. https://arXiv:2006.03412v2 [astro-ph.co]. https://arxiv.org/pdf/2006.03412.pdf

  8. Einasto M. et al. 2011, The SLOAN great wall. morphology and galaxy content, arXiv:1105.1632 [astro-ph.CO]. https://arxiv.org/pdf/1105.1632.pdf

  9. Evans R. F., Dunning-Davies J. 2004, The Gravitational Red-Shif, arXiv:0403082v1 [astro-ph.co]. https://arxiv.org/ftp/gr-qc/papers/0403/0403082.pdf

  10. Event Horizon Telescope Collaboration 2019, J. Lett. 875, 1

    ADS  Article  Google Scholar 

  11. Falcón N., Genova-Santos R. 2008, Exp. Fac. Sci. (Ciencia), 16, 323, http://produccioncientificaluz.org/index.php/ciencia/article/view/9868

  12. Falcon N. 2011, Rev. Mex. Astron. Astrofis. 40, 11

    Google Scholar 

  13. Falcon N. 2012, Mecánica Clásica: Física Teórica en formalismos de Lagrange, Hamilton y Hamilton-Jacobi. Pub. Universidad de Carabobo: Valencia Carabobo Venezuela, ISBN 978-980-233-546-6. https://www.researchgate.net/profile/Nelson_Falcon/publication/234719996_MECANICA_CLASICA_Fisica_Teorica_en_formalismos_de_Lagrange_Hamilton_y_Hamilton-Jacobi/links/02bfe50ffceab22ea9000000/MECANICA-CLASICA-Fisica-Teorica-en-formalismos-de-Lagrange-Hamilton-y-Hamilton-Jacobi.pdf

  14. Falcon N. 2013, J. Mod. Phys. 4, 10

    Article  Google Scholar 

  15. Falcon N., Aguirre A. 2014, IJAA 4, 551

    ADS  Article  Google Scholar 

  16. Gazeau J.-P., Novello M. 2011, IJMP 26, 3697

    ADS  Google Scholar 

  17. Genova-Santos R. T. 2020, The establishment of the Standard Cosmological Model through observations, arXiv:2001.08297v3 [astro-ph.CO]. https://arxiv.org/pdf/2001.08297.pdf

  18. Harris W. E. 1996, Astron. J., 112, 1487 (2010 Edition)

  19. Harris W. E. 2010, A new catalog of globular clusters in the Milky Way. https://arxiv.org/abs/1012.3224

  20. Huterer D., Shafer D. L. 2018, Rep. Prog. Phys. 81, 016901 arXiv:1709.01091v2 [astro-ph.CO]

    ADS  Article  Google Scholar 

  21. Kilic M. et al. 2017, ApJ 837, 162–171. https://iopscience.iop.org/article/10.3847/1538-4357/aa62a5/pdf

  22. Kovács A. et al. 2016, Imprint of DES super-structures on the Cosmic Microwave Background, arXiv:1610.00637 [astro-ph.CO]. https://arxiv.org/pdf/1610.00637.pdf

  23. Krauss L. et al. 2003, Science 299, 65

    ADS  Article  Google Scholar 

  24. Laves K. 1898, Pop. Astron. 5, 513

    ADS  Google Scholar 

  25. LIGO Scientific Collaboration and Virgo Collaboration 2017, Phys. Rev. Lett. 118, 221101

    ADS  Article  Google Scholar 

  26. Mach E. 1893, The Science of Mechanics. Cambridge University Press: Cambridge. https://fdocuments.in/document/e-mach-science-of-mechanicspdf.html

  27. Milgrom M. 1983a, Astrophys. J. 270, 365

    ADS  Article  Google Scholar 

  28. Milgrom M. 1983b, Astrophys. J. 270, 371

    ADS  Article  Google Scholar 

  29. Peebles P. J. E., Rastra B. 2003, Rev. Mod. Phys. 75, 559

    ADS  Article  Google Scholar 

  30. Perez L. et al. 2015, Acta Cient. Venezolana 66, 248

    Google Scholar 

  31. Perlmutter S. et al. 1999, Astrophys. J. 517, 565

    ADS  Article  Google Scholar 

  32. Planck Collaboration Planck early results. VIII. 2011, A&A, 536, A8

  33. Planck Collaboration. Planck 2015 Results. XIII. 2016, A&A, 594, A13

  34. Planck Collaboration. Planck 2018 results. VI. 2019, Cosmological parameters, arXiv:1807.06209 [astro-ph.CO]. https://arxiv.org/pdf/1807.06209.pdf

  35. Riess A. G. 2019, Astrophys. J., 876. https://doi.org/10.3847/1538-4357/ab1422

  36. Riess G. et al. 1998, Astron. J. 116, 1009

    ADS  Article  Google Scholar 

  37. Sabulsky D. O. et al. 2019, Phys. Rev. Lett. 123, 061102

    ADS  Article  Google Scholar 

  38. Scarpa R. 2006, Modified Newtonian Dynamics, an Introductory Review, arXiv:0601478 [astro-ph.co]. https://arxiv.org/ftp/astro-ph/papers/0601/0601478.pdf

  39. Shirmin G. I. 2016, Astron. Astrophys. Trans. 29, 313

    ADS  Google Scholar 

  40. Tremblay P. E. et al. 2014, White Dwarf Cosmochronology in the Solar Neighborhood, arXiv:1406.5173 [astro-ph.co]. https://arxiv.org/pdf/1406.5173.pdf

  41. Trippe S. 2014, The Missing Mass Problem in Astronomy and the Need for a Modified Law of Gravity, arXiv:1401.5904 [astro-ph.CO]. https://arxiv.org/pdf/1401.5904.pdf

  42. Wondrak M. F. 2017, The Cosmological Constant and its Problems: A Review of Gravitational Aethe, arXiv:1705.06294 v1[astro-ph.co]

  43. Zwicky F. 1933, Helv. Phys. Acta 6, 110

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. FALCON.

Appendix

Appendix

Additional note about the virial theorem

Beginning with the Clasius’s virial expression, we have:

$$ \begin{aligned} \frac{1}{\tau }\int_{0}^{\tau } {\frac{{{\text{d}}G}}{{{\text{d}}t}}\,} {\text{d}}t^{\prime} = & \frac{1}{\tau }\int_{0}^{\tau } {\sum\limits_{i} { - \vec{\nabla }U_{i} \cdot \vec{r}_{i} } } \,{\text{d}}t^{\prime} + \frac{1}{\tau }\int_{0}^{\tau } {\sum\limits_{i} {\frac{{p_{i}^{2} }}{{2m_{i} }}} } \,{\text{d}}t^{\prime}, \\ \frac{G(\tau ) - G(0)}{\tau } = & - \frac{1}{\tau }\int_{0}^{\tau } {\sum\limits_{i} {\left( {\frac{{GMm_{i} }}{{r_{i} }} + m_{i} \vec{F}_{{{\text{IY}}}} (r) \cdot \vec{r}_{i} } \right)} } \,{\text{d}}t^{\prime} \\ & + \frac{1}{\tau }\int_{0}^{\tau } {\sum\limits_{i} {T_{i} } } \,{\text{d}}t. \\ \end{aligned} $$
$$ \begin{aligned} 0 = & - \frac{1}{\tau }\int_{0}^{\tau } {\sum\limits_{i} {\left( {\frac{{GMm_{i} }}{{r_{i} }} + \frac{{m_{i} U_{0} (M)}}{r}\;{\text{e}}^{ - \alpha /r} [ {r^{2} + \alpha ( {r - r_{0} } )} ]} \right)} \,} {\text{d}}t^{\prime} + 2\langle T \rangle , \\ 0 = & - \Big \langle {\sum\limits_{i} {\frac{{GMm_{i} }}{{r_{i} }}} + \sum\limits_{i} {m_{i} U_{0} (M)} \,{\text{e}}^{ - \alpha /r} ( {r - r_{0} } )} \Big \rangle \\ & + 2\langle T \rangle + \frac{1}{\tau }\int_{0}^{\tau } {\sum\limits_{i} {m_{i} {\kern 1pt} U_{0} (M)\,{\text{e}}^{ - \alpha /r} \left( {\alpha + r_{0} - \frac{{\alpha r_{0} }}{r}} \right)\,} } {\text{d}}t^{\prime}. \\ \end{aligned} $$

The term within the integral is a continuous function, whose domains are all real numbers, differentiable on the interval (0, τ) and bounded by 1 and f(α), then follow with (38).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

FALCON, N. A large-scale heuristic modification of Newtonian gravity as an alternative approach to dark energy and dark matter. J Astrophys Astron 42, 102 (2021). https://doi.org/10.1007/s12036-021-09752-0

Download citation

Keywords

  • Dark matter—dark energy—gravity—graviton mass